An improved method of Newmark analysis for mapping hazards of coseismic landslides

Mingdong Zanga,b,c, Shengwen Qia,b,c,*, Zhuping Shengd, Blanca S. Zamorad, Yu Zoua,b,c

a Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
b Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
c University of Chinese Academy of Sciences, Beijing 100029, China
d Texas A&M AgriLife Research Center at El Paso, El Paso, Texas 79927, USA

* Corresponding Author.

E-mail address: qishengwen@mail.iggcas.ac.cn (S. W. Qi)
Abstract

Coseismic landslides have been responsible for destroyed buildings and structures, dislocated roads and bridges, cut off of pipelines and lifelines, and tens of thousands of deaths. Newmark’s method is widely applied to assess the permanent displacement along a potential slide surface to determine the coseismic responses of the slope. The M_w 6.1 (USGS) earthquake in Ludian, Yunnan Province, China in 2014 has caused widespread landslides and provided the ideal data sets to conduct a regional analysis of coseismic stability of slopes. The data sets include the topography, shear strength, and ground shaking of the study area. All of these data sets are digitized and rasterized at 30m grid spacing using ArcGIS and combined in a dynamic slope model based on Newmark permanent-deformation analysis. The application of Barton model was then applied in the permanent-deformation analysis. According to a method of inexact reasoning, comparisons are made between the predicted displacements and a comprehensive inventory of landslides triggered by the Ludian earthquake to map the spatial variability in certainty factors. A coseismic landslide hazard map is then produced based on the spatial distribution of the values of certainty factors. Such map can be applied to predict the hazard zone of the region and provide guidelines for making decisions regarding infrastructure development and post-earthquake reconstruction.

Keywords: Earthquakes; Landslides; Newmark’s method; Barton model; Certainty factors; Seismic hazards
1. Introduction

One of the major causes of landslides is recognized as the earthquake. Coseismic landslide hazards have drawn increasing attention in recent years (i.e. Jibson et al., 1998; Khazai and Sitar, 2004; Qi et al., 2010, 2011, 2012; Xu et al., 2013; Chen et al., 2012; Yuan et al., 2014). In fact, the damage caused by seismically triggered landslides is sometimes more severe than the damage direct from the earthquake (Keefer, 1984). Estimating where is likely to trigger landslides under a specific shaking condition plays an important role in regional seismic hazard assessment (Jibson et al., 1998). Pseudostatic analysis formalized by Terzhagi (1950) and finite-element modeling applied by Clough and Chopra (1966) were employed to assess the seismic stability of slopes in early efforts. Newmark (1965) first introduced a relatively simple and practical method, still commonly used, to estimate the coseismic permanent-displacements of slopes. Studies showed that Newmark’s method yields reasonable and practical results when modeling the dynamic performance of natural slopes (Wilson and Keefer, 1983; Wieczorek et al., 1985; Jibson et al., 1998, 2000; Pradel et al., 2005). Such applications generally start from an analysis of the dynamic stability of slopes that is quantified as the critical acceleration. Barton model has been widely used in rock mechanics and engineering field to predict the shear strength of rock joints, which plays a crucial role in the calculation of critical acceleration. To better estimate the dynamic stability of slopes, we introduce the Barton model into a Newmark analysis. An improved modeling method is developed using data from the 2014 Ludian earthquake in Yunnan Province, Southwestern China. Additionally, we present a method of inexact reasoning, certainty factor model, to produce a probabilistic coseismic landslide hazard map.

This paper briefly introduces the site characteristics and the spatial distribution of triggered landslides, describes the modeling method used for the analysis of seismic slope stability, then
presents the mapping procedure of the seismic slope-failure probability, and finally discusses the results of the seismic hazard assessment and the application of the modeling procedure.

2. Study area

The epicenter of the 2014 M_{w} 6.1 Ludian earthquake is located in the southeastern margin of the Tibetan plateau. A rectangular area lying immediately around the epicenter and containing dense concentrations of induced landslides was chosen for study. Elevation in the study area ranges from 785 m to 3,085 m above the sea. There are three rivers, the Niulanjiang River, the Shaba River and the Longquan River passing through the area. The topography ranges from flat in river valleys to nearly erect in the slopes on the side of the rivers. The Niulanjiang River, flowing from southeast (SE) to the northwest (NW), where according to Chen et al. (2015), incises down to a depth between 1,200 m and 3,300 m, resulting in about 80% of the slopes with gradients greater than 40° distributed along the banks. Predominant geologic units of the study area vary in the era from Proterozoic to Mesozoic, including basalt, sandstone, shale, limestone, dolomite, and slate.

A landslide inventory containing 1,415 landslides (Fig. 1) was posed through comparison between pre-earthquake and post-earthquake satellite images. The majority of landslides triggered in this earthquake were shallow flow-like landslides (less than 3 m deep) developing in particularly dense concentrations along steeply incised river valleys. The total area of these interpreted landslides was 7.01 km² within a study area of 705 km². A detailed study showed that 846 of the mapped landslides were greater than 1,000 m², occupying 6.74 km² and accounting for 96.1% of the total landslide area, out of which 279 of the mapped landslides were greater than 5,000 m², occupying 5.37 km² and accounting for 76.6% of the total landslide area.
3. Methodology

3.1 Modeling method

In the context of the analysis of the dynamic stability of a slope, Newmark (1965) proposed a permanent-displacement analysis that bridges the gap between simplistic pseudostatic analysis and sophisticated, but generally impractical finite-element modeling (Jibson, 1993). Newmark’s method simulates a landslide as a rigid-plastic friction block having a known critical acceleration on an inclined plane (Fig. 2), and then calculates the cumulative permanent displacement of the block as it is subjected to an acceleration-time history of an earthquake. Newmark (1965) showed that the dynamic stability of a slope is related to the critical acceleration of a potential landslide block, and it can be expressed as a simple function of the static factor of safety and the landslide geometry as below:

\[a_c = (FS - 1)gsin\alpha \]

where \(a_c \) is critical acceleration in terms of \(g \), the acceleration due to earth’s gravity, \(FS \) is static factor of safety, and \(\alpha \) is the angle from the horizontal that the center of the slide block moves when displacement first occurs. For a planar slip surface parallel to the slope, this angle can generally be approximated as the slope angle.

Natural slopes often develop a group of shallow unloading joints (Fig. 3) that parallel to the surface due to valley incisions (Gu, 1979; Hoek and Bray, 1981). Studies showed that rock slopes behave as collapsing and sliding failure of the shallow unloading joints under strong earthquakes, and 90% of coseismic landslides are concentrated in the shallow of slopes (Harp and Jibsion, 1996; Khazai and Sitar, 2003; Dai et al., 2011; Tang et al., 2015). According to Qi et al. (2012), there are two typical kinds of earthquake triggered landslides, i.e., (a) shallow flow-
like landslides with depth less than 3 m in general and (b) thrown landslides occurred at the crest of the slope. For both types, the unstable rock blocks are often cut and activated along the rock joints. Therefore, the static factor of safety in terms of the critical acceleration in these conditions is related to the peak shear strength of the rock joints. For the purpose of regional stable analysis, we use a limit-equilibrium model of an infinite slope (Fig. 2) referring to the simplification of Jibson et al. (1998) on Newmark’s method. On this occasion, the value of the static factor of safety against sliding which is given by the ratio of resisting to driving force is determined by conventional analysis with no consideration of horizontal or inclined accelerations, expressed as:

\[
FS = \frac{\text{Resisting force}}{\text{Driving force}} = \frac{\tau L}{mg \sin \alpha} = \frac{\tau L}{\gamma L \sin \alpha} = \frac{\tau}{\gamma \sin \alpha}
\]

(2)

where \(\tau\) is peak shear strength of the rock joint, \(\gamma\) is unit weight of the rock mass, and \(t\) is the thickness of the failure rock block.

For a Newmark analysis, it has been customary to describe the shear strength of rocks not rock joints in terms of Coulomb’s constants for friction and cohesion. However, both are not only stress dependent variables, but also scale dependent (Barton and Choubey, 1977). According to Barton (1973), a more satisfactory empirical relationship for predicting the peak shear strength of a joint can be written as follows:

\[
\tau = \sigma_n \tan[JRC \log_{10}\left(\frac{JCS}{\sigma_n}\right) + \phi_b]
\]

(3)

where \(\sigma_n\) is effective normal stress, \(JRC\) is joint roughness coefficient, \(JCS\) is joint wall compressive strength, \(\phi_b\) is basic friction angle.

The effective normal stress \((\sigma_n)\) generated by the gravity acting on the rock block is as follows:

\[
\sigma_n = \frac{mg \cos \alpha}{L} = \frac{\gamma L \cos \alpha}{L} = \gamma \cos \alpha
\]

(4)
Considering the impact of size effect on JRC and JCS, formulations were developed by Barton and Bandis (1982) and are shown as below:

$$JRC_n = JRC_0 \left(\frac{L_n}{L_0} \right)^{-0.02/JRC_0} \tag{5}$$

$$JCS_n = JCS_0 \left(\frac{L_n}{L_0} \right)^{-0.03/JRC_0} \tag{6}$$

where the nomenclature adopted incorporates the (0) and (n) for laboratory scale and in situ scale values respectively.

Hence the static factor of safety (FS) of a slope can be written as:

$$FS = \frac{\tau}{\gamma t \sin \alpha} = \frac{\sigma_n \tan [JRC_n \log_{10} \left(\frac{JCS_n}{\gamma t \cos \alpha} \right) + \phi_b]}{\gamma t \sin \alpha}$$

$$= \frac{\gamma t \cos \alpha \tan [JRC_n \log_{10} \left(\frac{JCS_n}{\gamma t \cos \alpha} \right) + \phi_b]}{\gamma t \sin \alpha}$$

$$= \frac{\tan [JRC_n \log_{10} \left(\frac{JCS_n}{\gamma t \cos \alpha} \right) + \phi_b]}{\tan \alpha} \tag{7}$$

After knowing the slope angle and the static factor of safety, the critical acceleration of a slope can be determined. Once the earthquake acceleration-time history has been selected, those portions of the record lying above the critical acceleration a_c (Fig. 4a) are integrated once to derive a velocity profile (Fig. 4b), which in turn is integrated a second time to obtain the cumulative displacement profile of the block (Fig. 4c). Users then judge the dynamic performance of a slope based on the magnitude of the Newmark displacement. The detailed procedure of conducting a Newmark analysis with Barton model is discussed in the following sections.

3.2 Static factor of safety
Considering that the mapped landslides greater than 1,000 m² occupy 96.1% of the total landslide area, we selected a 30 m × 30 m digital elevation model (DEM) ASTER Global Digital Elevation Model (https://doi.org/10.5067/ASTER/ASTGTM.002, last accessed July 16, 2018) that is capable of facilitating the subsequent hazard analysis. A basic slope algorithm was applied to the DEM to produce a slope map (Fig. 5), where the slope is identified as the steepest downhill descent from the cell to its neighbors (Burrough and McDonell, 1998). The slopes range from greater than 60° in the banks of the Niulanjiang River, the Shaba River and the Longquan River, to less than 20° in moderate and low mountains and hills in north and east.

Digital geologic map from China Geological Survey (GCS) was rasterized at 30 m grid spacing for assigning material properties throughout the study area. According to the literature researches, we found that JRC_0 and JCS_0 depend strongly on the lithology. Representative values of γ, JRC_0, JCS_0 and ϕ_b assigned to each rock type exposed in the area can normally be estimated with the help of the test data listed in Table 1. The selected values were near the middle of the ranges represented in the references. These JRC_0 and JCS_0 are considered in laboratory scale, for the length of 100mm as L_0. For each grid cell in regional analysis, L_n, the length of engineering dimension, can generally be approximated as $\frac{30m}{\cos\alpha}$, where 30 m is the cell size of the raster grid and α is the slope angle. The values of JRC_n and JCS_n, then, are calculated by inserting values from JRC_0, JCS_0, L_0, and L_n into Eq. (5) and Eq. (6). Fig. 6 shows the JRC_0 (Fig. 6a) and JCS_0 (Fig. 6b) values assigned to the rock types exposed in the study area, while Fig. 7a and Fig. 7b show the JRC_n and JCS_n values respectively. The basic-friction-angle (ϕ_b) map and unit weight (γ) map are shown as Fig. 8 and Fig. 9 respectively.

For simplicity, the thickness of the modeled block t was taken to be 3 m, which reflects the typical slope failures of the Ludian earthquake. The static factor-of-safety map was produced by
combing these data layers ($\alpha, JRC_n, JCS_n, \phi_b,$ and γ) in Eq. (7). In the initial iteration of the calculation, static factors of safety ranged from 0.09 to 125.27. Grid cells in steep areas with static factors of safety less than 1 indicate that the slopes are statically unstable, but do not necessarily mean that the slopes are moving under the earthquake shaking. In this condition, to avoid conservative results, we did not increase the strengths of rock types having statically unstable cells, either, adjust strengths of other rock types to preserve the relative strength differences between rock types. Instead we assigned a minimal static factor of safety as 1.01, merely above limit equilibrium, to these slopes, to avoid a negative value of the critical acceleration a_c. According to Keefer (1984), most landslides triggered by earthquakes occur with a slope of 5° at least. Static factors of safety resulting from slopes less than 5° were very high, and these slopes that were impossible to have failures under the Ludian earthquake did not produce a statistically significant sample to the analysis. Therefore, slopes less than 5° were not analyzed during the second iteration. After the adjustment, the static factors of safety ranged from 1.0 to 8.5, as shown in Fig. 10.

3.3 Critical acceleration

According to Newmark (1965), a pseudostatic analysis in terms of the static factor of safety and the slope angle was employed to calculate the critical acceleration of a potential landslide. The critical-acceleration map (Fig. 11) was produced by combining the static factor of safety and the slope angle in Eq. (1). The critical acceleration that results in a static factor of safety of 1.0 and initiates a sliding of a slope in a limit-equilibrium analysis is derived from the intrinsic slope properties (topography and lithology), regardless which ground shaking is given. Therefore, the critical-acceleration map indicates the susceptibility of the coseismic landslides (Jibson et al., 1998). The calculated
critical accelerations range from 6.35 g in areas that are more susceptible to coseismic landslides, to almost zero in areas with lower susceptibility.

3.4 Shake map

There were 23 strong-motion stations within 100 km of the Ludian earthquake epicenter. Each station record included three components of the peak ground acceleration (PGA), in south-north direction, east-west direction and up-down direction respectively. We calculated the average PGA of the two horizontal components of each strong-motion recording, and then plotted a contour map (Fig. 12) using an Inverse Distance Weighted (IDW) interpolation algorithm. This method assumes that the variable of the average PGA being mapped decreases in influence with distance from its sampled location. Inverse Distance Weighted (IDW) interpolation determines cell values using a linearly weighted combination of a set of sample stations (Watson and Philip, 1985). The weight is a function of inverse distance. In addition, considering that input stations far away from the cell location where the prediction is being made may have poor or no spatial correlation, we eliminated the input stations out of 100 km from the calculation.

3.5 Newmark displacement

In a real landslide hazard case, it is impossible to conduct a rigorous Newmark analysis when accelerometer records are unavailable. It is also impractical and time consuming to produce a displacement in each cell during the regional analysis. Therefore, empirical regressions (Ambraseys and Menu, 1988; Jibson, 1993; Jibson et al., 1998; Saygili and Rathje, 2008; Rathje and Saygili, 2009; Hsieh and Lee, 2011) were proposed to estimate Newmark displacement as a function of the critical acceleration and peak ground acceleration or Arias intensity. Among those empirical estimations, Rathje and Saygili (2009) developed a scalar model for
displacement in terms of the critical acceleration \((a_c)\), peak ground acceleration \((PGA)\) and moment magnitude \((M_w)\) based on analysis of over 2,000 strong motions.

\[
\ln D = 4.89 - 4.85 \left(\frac{a_c}{PGA} \right) - 19.64 \left(\frac{a_c}{PGA} \right)^2 + 42.49 \left(\frac{a_c}{PGA} \right)^3 - 29.06 \left(\frac{a_c}{PGA} \right)^4
+ 0.72 \ln(PGA) + 0.89(M_w - 6)
\] (8)

where \(D\) is predicted displacement in units of \(cm\), \(a_c\) and \(PGA\) are in units of \(g\).

This model is a preferred displacement model at a specific site where acceleration-time recordings are not available. The incorporating multiple ground motion parameters in the analysis typically results in less variability in the prediction of displacement (Rathje and Saygili, 2009).

The Newmark displacement (Fig. 13) in each cell was calculated by combing corresponding values of the critical acceleration, peak ground acceleration and moment magnitude in Eq (8).

Predicted displacements range from 0 cm to 123 cm.

3.6 Certainty factor and coseismic landslide hazard map

According to Jibson et al. (1998), predicted displacements provide an index of seismic performance of slopes, but do not correspond directly to measurable slope movements in the field. Therefore, larger predicted displacements do not necessarily relate to greater incidence of slope failures. To produce a coseismic landslide hazard map, we chose a model of inexact reasoning, the certainty factor model (CFM), which was created by Shortliffe and Buchanan (1975) and improved by Hecherman (1986), to explore the relationship between the landslide occurrences and the predicted displacements. The CFM was created as a numerical method, which was initially used by MYCIN, a backward chaining expert system in medicine (Shortliffe and Buchanan, 1975), for managing uncertainty in a rule-based system. In this model, the certainty factor \(CF\) represents the net belief in a hypothesis \(H\) based on the evidence \(E\)
Certainty factors range between -1 and 1. A CF with a value of -1 means total disbelief, whereas a CF with a value of 1 means total belief. Values greater than 0 favor the hypothesis while values less than 0 favor the negation of the hypothesis. According to Hecherman (1986), there is a probabilistic interpretation for CF shown as below:

\[
CF = \begin{cases}
\frac{p(H|E) - p(H)}{p(H|E)[1 - p(H)]}, & p(H|E) > p(H) \\
\frac{p(H|E) - p(H)}{p(H)[1 - p(H|E)]}, & p(H|E) < p(H)
\end{cases}
\]

where \(CF\) is the certainty factor, \(p(H|E)\) denotes the conditional probability for the case of a posterior hypothesis that relies on evidence, the posterior probability, and \(p(H)\) is the prior probability before any evidence is known. In the displacement analysis, \(p(H|E)\) was defined as the proportion of the landslide area within a specific displacement area while \(p(H)\) was defined as the proportion of the landslide area within the entire study area excluding the slopes less than 5°. In this way, values of \(CF\) represent the probability of coseismic landslides. Positive values correspond to an increase in probability in a slope failure while negative quantities correspond to a decrease in probability. Greater positive values indicate higher probability of coseismic landslides.

Given this definition, we could produce a coseismic landslide hazard map in terms of certainty factors. First, displacement cells in every 1 cm were grouped into bins, such that all cells having displacements between 0 cm and 1 cm were grouped into the first bin; those having displacements between 1 cm and 2 cm were grouped into the second bin, and so on. The displacements were grouped into 123 bins, from 0 cm to 123 cm except for 122 cm (no predicted displacement in 122 cm). Later, we calculated the proportion of landslide cells in each bin. This proportion was considered the posterior probability of each bin as defined. The prior probability
calculated by dividing the entire landslide area by the entire study area is same in each bin. Finally, values of CF were computed in each bin by using Eq. (9) to combine corresponding values of the posterior probability and prior probability. Certainty factors range from -1.00 to 0.83. Values of CF indicate probabilities of landslide occurrence of each bin in the study area and provide the basis for producing a coseismic landslide hazard map.

As shown in the hazard map for the Ludian earthquake (Fig. 14), most of the actual triggered landslides lie in the higher probability areas with CF values greater than 0.60. The interpreted landslides are covered on the map to demonstrate the good fit for predicted probabilities of coseismic landslides.

4. Results and Discussion

The predicted displacements represent the cumulative sliding displacements for a given acceleration-time history. Based on the statistically significant sizes of the area of each displacement shown in Fig. 15, we conclude that the study area would probably suffer from different types of coseismic landslides. The vast majority of area are from displacements that less than the middle of the ranges. Displacements around 60 cm have the largest area, and displacements less than 2 cm have the second largest area, while displacements greater than 90 cm occupy a very small area. Jibson et al. (1998) supposed that shallow falls and slides in brittle, weakly cemented materials would fail at a relatively small displacement, while slumps and block slides in more compliant materials would likely fail at a larger displacement. That is to say, the study area is more susceptible to rock falls and shallow, disrupted slides that fail at a relatively small displacement, while the study area is with a lower probability subjected to coherent, deep-seated slides that would fail at a larger displacement. Indeed, the majority of landslides triggered
by the Ludian earthquake were shallow, disrupted slides and rock falls (Zhou et al., 2016).

Although few catastrophic rock avalanches, such as the Hongshiyan landslide (Chang et al., 2017), occurred in the field, they did not produce statistically significant samples that could meaningfully contribute to the model, which was consistent with the statistic results as discussed previously. Therefore, the model should relate well to typical kinds of earthquake-induced landslides in the study area, meanwhile demonstrate its potential utility to predict the probability of other types of landslides.

For each value of CF, the proportion of landslide area was plotted as a dot in Fig. 16. The data was fitted by a second order exponential growth function. The fitting appears to be very good: the proportion of landslide area within each CF-value area increases exponentially with the increase of the value of CF. When the value of CF is reaching 1.0 (total belief) in Fig. 16, the proportion of landslide area is monotonically getting close to 1.0, which means the probability of a slope failure is growing and a landslide would probably occur. Such a procedure is consistent with the interpretation of the certainty factor theory. Therefore, the CFM demonstrates the capability of its representation and predicting approach for a probabilistic hazard analysis of coseismic landslides.

When fitting the results of shear tests using Coulomb’s linear relation, the shear strengths vary widely from high normal stress in laboratory to low normal stress in the field (Barton, 1973). We introduced Barton model into the Newmark analysis to reduce the variability of shear strengths in terms of Coulomb’s constants. And we considered the impact of scale effects by using Eq. (5) and Eq. (6), which helps to prevent Newmark’s method from underestimating the shear strength of geologic units in a regional analysis. In addition, for Barton model, the joint roughness coefficient (JRC) could be estimated from tilt tests or from matching of Barton joint standard
roughness profiles that were regarded by the International Society for Rock Mechanics (ISRM, 1978), while the joint wall compressive strength (JCS) could be estimated by Schmidt hammer index tests. These tests are helpful to make a quick estimate of the shear strength in situ, which could facilitate using Newmark’s method in an emergency hazard and risk assessment after an earthquake.

Shear strengths assigned to the geologic units were from results of hundreds of shear tests from the references. Although the assigned shear strengths would have uncertainty in some way, the good fit of the spatial distribution of coseismic landslides shown by the probabilistic hazard map (Fig. 15) demonstrates the practicability of Barton model in the analysis.

5. Conclusion

Newmark’s method is a useful, physically based model to estimate the seismic stability of natural slopes. Mapping procedure of data from the Ludian earthquake shows the feasibility of Barton model in a Newmark analysis. Such method decreases the uncertainty of shear strengths in a Newmark model and provides practical applications in regional seismic hazard assessment. We also consider the size effect of shear strength parameters, such as the joint roughness coefficient (JRC) and the joint wall compressive strength (JCS) in a regional analysis. Moreover, the linkage of Newmark displacements to certainty factor model improves the utility of Newmark’s method to predict the probabilistic hazard of coseismic landslides.

Acknowledgements
This work is supported by Natural Science Foundation of China under Grants of Nos. 41825018 and 41672307, Science and Technology Service Network Initiative under Grant No.
KFJ-EW-STS-094, and the sponsorship from the China Scholarship Council (No. 201704910537).
References

Figure Captions

Fig. 1. Map of the study area showing interpreted landslides.

Fig. 2. Conceptual sliding-block model of a Newmark analysis.

Fig. 3. A schematic diagram showing shadow unloading joints in the slope.

Fig. 4. Demonstration of the Newmark-analysis algorithm (adapted from Wilson and Keefer, 1983)

Fig. 5. Slope map derived from the DEM of the study area.

Fig. 6. (a) JRC_0 and (b) JCS_0 assigned to rock types in the study area.

Fig. 7. (a) JRC_n component and (b) JCS_n component of shear strength assigned to rock types in the study area.

Fig. 8. Basic-friction-angle (ϕ_b) component of shear strength assigned to rock types in the study area.

Fig. 9. Unit weight (γ) assigned to rock types in the study area.

Fig. 10. Static factor-of-safety map of the study area.

Fig. 11. Map showing critical accelerations in the study area.

Fig. 12. Contour map of peak ground acceleration (PGA) produced by the Ludian earthquake in the study area. PGA values shown are in g.

Fig. 13. Map showing predicted displacements in the study area.

Fig. 14. Map showing probability of coseismic landslides in the Ludian earthquake. Probability is portrayed in terms of values of CF.

Fig. 15. Statistics data display the area of each predicted displacement.
Fig. 16. Proportion of the area of landslides lying in each CF-value area. A dot shows the proportion of landslide area within an area of CF value; the red line is the fitting curve of the data using second order exponential growth function.
Fig. 1. Map of the study area showing interpreted landslides.
Fig. 2. Conceptual sliding-block model of a Newmark analysis. The potential landslide is modeled as a rigid-plastic block resting on an inclined plane at an angle (α) from the horizontal. The base of the block is subjected to an earthquake ground acceleration that is denoted by Ag.
Fig. 3. A schematic diagram showing shadow unloading joints in the slope.
Fig. 4. Demonstration of the Newmark-analysis algorithm (adapted from Wilson and Keefer, 1983): (a) Acceleration-time history with critical acceleration (horizontal dotted line) of 20%g superimposed. (b) Velocity of block versus time. (c) Displacement of block versus time.
Fig. 5. Slope map derived from the DEM of the study area.
Fig. 6. (a) JRC_0 and (b) JCS_0 assigned to rock types in the study area.
(a)
Fig. 7. (a) JR_C component and (b) JCS_n component of shear strength assigned to rock types in the study area.
Fig. 8. Basic-friction-angle (ϕ_b) component of shear strength assigned to rock types in the study area.
Fig. 9. Unit weight (γ) assigned to rock types in the study area.
Fig. 10. Static factor-of-safety map of the study area.
Fig. 11. Map showing critical accelerations in the study area.
Fig. 12. Contour map of peak ground acceleration (PGA) produced by the Ludian earthquake in the study area. PGA values shown are in g.

514
515
516
517
Fig. 13. Map showing predicted displacements in the study area.
Fig. 14. Map showing probability of coseismic landslides in the Ludian earthquake. Probability is portrayed in terms of values of CF.
Fig. 15. Statistics data display the area of each predicted displacement.
Fig. 16. Proportion of the area of landslides lying in each CF-value area. A dot shows the proportion of landslide area within an area of CF value; the red line is the fitting curve of the data using second order exponential growth function.

$$y = 0.000164034 e^{0.09492 CF} + 0.08482 - 0.09492 e^{0.09492 CF}$$

$R^2 = 99.97\%$
Table Captions

Table 1. Shear strengths assigned to rock types in the study area
Table 1

Shear strengths assigned to rock types in the study area

<table>
<thead>
<tr>
<th>Rock type</th>
<th>γ (kN/m3)</th>
<th>φ_b</th>
<th>JCS_0 (MPa)</th>
<th>JRC_s</th>
<th>References</th>
</tr>
</thead>
</table>
| Slate | 26.5 | 28° | 130 | 3 | Coulson, 1972
Barton and Choubey, 1977
Bandis et al., 1983
Alejano et al., 2012
Yong et al., 2018
Bandis et al., 1983 |
| Limestone | 21.5 | 34° | 100 | 9 | Singh et al., 2012
Yong et al., 2018
Coulson, 1972 |
| Basalt | 27.9 | 36° | 205 | 4 | Barton and Choubey, 1977
Alejano et al., 2014
Singh et al., 2012 |
| Dolomite | 25.9 | 32° | 140 | 9.5 | Giusepone, 2014
Alejano et al., 2014 |