Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 2.883 IF 2.883
  • IF 5-year value: 3.321 IF 5-year
    3.321
  • CiteScore value: 3.07 CiteScore
    3.07
  • SNIP value: 1.336 SNIP 1.336
  • IPP value: 2.80 IPP 2.80
  • SJR value: 1.024 SJR 1.024
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 81 Scimago H
    index 81
  • h5-index value: 43 h5-index 43
Discussion papers
https://doi.org/10.5194/nhess-2019-271
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-2019-271
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 07 Oct 2019

Submitted as: research article | 07 Oct 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Natural Hazards and Earth System Sciences (NHESS).

Effects of coupled hydro-mechanical model considering two-phase fluid flow on potential for shallow landslides: a case study in Halmidang Mountain, Yongin, South Korea

Sinhang Kang and Byungmin Kim Sinhang Kang and Byungmin Kim
  • Ulsan National Institute of Science and Technology, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea 44919

Abstract. More than 30 shallow landslides were caused by heavy rainfall that occurred on July 26 and 27, 2011, in Halmidang Mountain, Yongin-si, Gyeonggi Province, South Korea. To precisely analyze shallow landslides and to reflect the mechanism of fluid flow in void spaces of soils, we apply a fully coupled hydro-mechanical model considering two-phase fluid flow of water and air. The available GIS-based topographic data, geotechnical and hydrological properties, and historical rainfall data are used for infiltration and slope stability analyses. Changes in pore air and water pressures and saturations of air and water are obtained from the infiltration analysis, which were used to calculate the safety factor for slope stability assessment. By comparing the results from numerical models by applying a single-phase flow model and a fully coupled model, we investigate the effects of air flow and variations in hydraulic conductivity affected by stress–strain behavior of soil on slope stability. Our results suggest that air flow and hydro-mechanical coupling affects the rate of increase in pore water pressure, thus influencing the safety factor on slopes when ponding is more likely to occur during heavy rainfall. Finally, we conduct slope failure assessments using the fully coupled model, slightly more consistent with actual landslide events than the single-phase flow model.

Sinhang Kang and Byungmin Kim
Interactive discussion
Status: open (until 02 Dec 2019)
Status: open (until 02 Dec 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Sinhang Kang and Byungmin Kim
Sinhang Kang and Byungmin Kim
Viewed  
Total article views: 112 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
86 26 0 112 0 0
  • HTML: 86
  • PDF: 26
  • XML: 0
  • Total: 112
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 07 Oct 2019)
Cumulative views and downloads (calculated since 07 Oct 2019)
Viewed (geographical distribution)  
Total article views: 99 (including HTML, PDF, and XML) Thereof 99 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 20 Oct 2019
Publications Copernicus
Download
Short summary
We assessed slope stability during rainfall to identify the potential unstable slopes at a regional scale. To exactly analyze fluid flow in voids of soils and its effect on slope stability, we considered the infiltrations of both water and air, interacting with ground deformations. Our results suggest that air flow and considering the interaction of fluid flow and ground deformations affects the infiltration rates of fluids, thus influencing the slope stability (particularly during heavy rain).
We assessed slope stability during rainfall to identify the potential unstable slopes at a...
Citation