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Abstract. Studies about landslide modeling and monitoring are becoming more diverse. Data assimilation is an approach to 10 

combine mechanism models and observations. In this study, an improved particle filtering algorithm is used to assimilate the 

transient rainfall infiltration and grid-based regional slope-stability analysis (TRIGRS) model and landslide surface 

deformation monitoring data observed with GPS and InSAR. After assimilation calculation, factor of safety (FS) has been 

effectively corrected, rather than continuously decreasing as the background model output. The root mean square difference 

(RMSD) tends to decrease from a maximum of 0.084 to a minimum of 0.026 in the process of assimilation, which means the 15 

assimilation process makes the model output FS closer to the actual observations. The friction angle (φ) is an investigated 

parameter in this experiment, and it can be updated and fed back in each step of assimilation. Parameter update and feedback 

process make the model prediction trajectory closer to the observation. The groundwater pressure head is output as an 

assimilation result simultaneously. 

1 Introduction 20 

Landslides induced by rainfall pose a huge threat on human lives and properties around the world(Hungr, et al., 2001, 

Kirschbaum, et al., 2010). Currently, there are varies types of methods for landslides analysis, such as physical mechanism 

modeling(Wu and Sidle, 1995, Iverson, 2000, Hong, et al., 2007, Baum, et al., 2008, De Blasio and Crosta, 2017, Martelloni, 

et al., 2017), 3D modeling based on numerical analysis(Crosta, et al., 2003, McDougall and Hungr, 2004, Hungr and 

McDougall, 2009, Merritt, et al., 2014, Yang, et al., 2014, Martelloni, et al., 2017) and time series analysis of landslide 25 

deformation (Gokceoglu and Aksoy, 1996, Hong, et al., 2007, Rossi, et al., 2010, Liu, et al., 2013, Turner, et al., 2015, Dong, 

et al., 2018). The transient rainfall infiltration and grid-based regional slope-stability analysis (TRIGRS) model program coded 

in Fortran computes transient pore-pressure changes, and attendant changes in the factor of safety (FS), due to rainfall 

infiltration. It is designed for modeling the timing and distribution of shallow, rainfall-induced landslides(Baum, et al., 2008). 

Some studies about landslides safety analysis using TRIGRS are developed in recent years(Liao, et al., 2011, Park, et al., 2013, 30 
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Bordoni, et al., 2015, Viet, et al., 2017). Increasing studies about landslide surface deformation monitoring and analysis are 

carried out, including GNSS, SAR/InSAR technology, three-dimensional laser scanning(Squarzoni, et al., 2005, Brueckl, et 

al., 2006, Du and Teng, 2007, Peyret, et al., 2008, Yin, et al., 2010, Dong, et al., 2018). 

Data assimilation (DA) is a method of combining a dynamic system and observations of its states, in order to improve the 

accurate description of the system, including its uncertainty analysis. It includes the background model of dynamic process 5 

and direct or indirect observations of states. It DA uses all available observed information and background model to simulate 

the real process, estimate uncertain state and parameters, and thus improve the prediction(Talagrand, 1997, Evensen, 2009). 

DA is widely applied in many fields such as oceanic and atmospheric modelling for prediction in different scales, regional or 

global hydrology research including parameter estimation and dynamic analysis, and evolution and inversion of land surface 

process(Kalnay, et al., 1996, Houtekamer and Mitchell, 2001, Rowley, et al., 2002, Uppala, et al., 2005, Salamon and Feyen, 10 

2009, Plaza, et al., 2012, Mazzoleni, et al., 2018). But in the scope of landslide research, there are only a few preliminary 

studies(Brezzi, et al., 2016, Jiang, et al., 2016, Xue, et al., 2018). Using the TRIGRS program as the background, we studied 

the approach to merging observations of landslide surface deformation into the evolutionary model, and investigated the update 

and feedback of the parameter friction angle (φ).  

A great number of approaches of DA have been developed in recent years, of which sequential filtering algorithms like particle 15 

filtering (PF) are increasingly popular. PF is based on Bayesian theory and originally introduced by Arulampalam into 

DA(Arulampalam, et al., 2002). It is developed in many DA studies due to the advantage of being unconstrained by state 

Gaussian distribution and linear assumptions because that it has the advantage of solving the state estimation problem of 

nonlinear systems (Weerts and El Serafy, 2006, Chorin, et al., 2010, Liu, et al., 2013, Thirel, et al., 2013, Fearnhead and 

Kunsch, 2018).  However, PF still has disadvantages like particle degradation, which means with the recursion of the system 20 

most particles’ weights tend to be zero and only a few particles have effects on the results(Carpenter, et al., 1999). Therefore, 

a number of improved algorithms for particle filtering have been proposed(Pitt and Shephard, 1999, Kotecha and Djuric, 2003, 

Khan, et al., 2005, van Leeuwen, 2010, Zhang, et al., 2013, Wu, et al., 2014, Xi, et al., 2015).  

In this study, an improved particle filter algorithm(Xue, et al., 2018) is adopted to perform assimilation experiments on 

TRIGRS landslide models and deformation observation data in the area of Xishancun landslide, Sichuan Province, China. 25 

InSAR and GPS monitoring data in the study area are chosen as observations of assimilation.  Taking friction angle (φ) for 

example, we investigate the sensitivity analysis to determine the original value of a parameter and propose the parameter 

update and feedback mechanism to adapt the model to observations. The assimilation results and the change changing trend 

of friction angle during the assimilation period are illustrated in the paper. Results show that the assimilation can effectively 

improve the accuracy of state estimation by fixing the TRIGRS model to be close to observations. 30 

2 The improved particle filtering 

State transition equations and observation equations for a dynamic space model can be written as  
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where x is the state vector with initial probability density function (PDF) 
0( )p x , k is the subscript of time steps, 

1kε  is system 

noise with zero mean at step k-1, and ( )f  is the model operator. 
kz  is the observation vector at step k, and ( )h  is the 

observation operator. In particle filtering, initial N particles are sampled from 
0( )p x to express the PDF of the state. The 5 

estimation of the state is represented by the weighted average of the particles. Weights of particles are calculated by (3), and 

normalized to get i

kw  by (4)  
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where i is the index of particle number, ( | )i

k kp z x  is the likelihood of observation, and 1( | , )i i

k k kq x x z  is the proposal function. 10 

The estimation of the state is  
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An improved particle filtering algorithm was proposed to improve computing efficiency(Xue, et al., 2018). The algorithm 

made two improvements. Firstly, each particle adds a gain term during the update process to distribute the particle set in the 

interval where the observed probability density is large. Secondly, with Gaussian-distributed particle sequences are generated 15 

to replace replicated particles during resampling so that it can maintain particle diversity. This improved particle filtering 

algorithm has been proven to improve computational efficiency.  

In this experiment, the state transition model is TRIGRS. This process is achieved by updating the parameters, such as shear 

strength indices and groundwater pressure head. When new observation data is added to update the FS, the parameters are 

estimated and updated, and then the updated parameters are used for the next operation. Otherwise, the TRIGRS model 20 

continues to run and the parameters remain unchanged.  

3 Geologic background 

The study area is located at around 31 35'N,103 26.5'E  (Figure 1), the northern bank of Zagunao River in Xishancun, 

between Wenchuan and Li County, Sichuan, China. It is at the east of the Tibetan Plateau, where exists a strong crustal activity 

and influenced by the Wenchuan earthquake in 2008. It is located at the junction of the Eurasian plate and the Indian Ocean 25 
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plate. The geological structure is complex and the geological activities are active. The front and rear boundaries are respectively 

1510m and 3300m above the sea level. The whole length of the landslide is about 3800m, and the width is varied in a range of 

680m to 980m(Qu, et al., 2016).  The landslide body is the northern side of a V-shaped valley which is inhabited by a number 

of villagers, and slides from north to south. Its southern edge is close to Wenma Expressway and National Highway 317. 

Affected by human activities, such as terraces reclamation and road construction, some areas form severe steep slopes or 5 

collapses.  

Xishancun Landslide is divided into three parts according to different soil conditions the topography as Figure 2 shows. The 

slope of the lower block is between 27  to 32 , and the average slope of the middle block and upper block are 22  and 27  

respectively. The middle block has a part of thick and loose soil, and the deformation is relatively large. The deformations of 

lower and upper blocks are relatively small. Due to the highest resolution of the observed data is 5 meters, the landslide is 10 

divided into 781 477  grids, part of the surrounding area included. Distribution of soil thickness and groundwater depth in 

the grid is shown in Figure 3. 

4 Data observation and processing 

Several GPS stations and boreholes are established on the surface of Xishancun Landslide. Four GPS monitoring stations are 

receiving positioning observations along the sliding direction of the landslide body. One base station is established on the 15 

bedrock of the adjacent mountain, monitoring the three-dimensional deformation of the landslide surface by relative 

positioning. Three boreholes are distributed in each block to obtain hydrological parameters of different areas. Figure 4 shows 

the positions of GPS stations and boreholes on the slope.  

4.1 Collection of Deformation Observations 

GPS Monitoring data is collected from Aug 12, 2015, to Nov 07, 2017, one set of observations every 10 days. In order to 20 

eliminate the influence of plate motion, we use the relative positioning method to calculate the displacement of each monitoring 

station related to the base station (Figure 4). Correspondingly, the relative positioning error sequence is as shown in Figure 5. 

Another data set is InSAR observations of Sentinel-1 interferometric wide (Sentinel-1 IW) data. The Sentinel-1 IW image 

width is 250km, and each image consists of three left and right overlapping frames. We collect the Sentinel-1 IW data for the 

period of Aug 5, 2015, to Jul 13, 2017, a total of 34 sets of data. Most of these data sets are separated by 12 or 24 days and a 25 

few by 6 days. InSAR observation accuracy is usually better than 1cm. An average velocity map of deformations per-year is 

illustrated in Figure 7. However, the displacement of InSAR observation is always along the direction of the radar line of sight 

(LOS). In order to verify the consistency of GPS and InSAR observations, these two observations must be projected in the 

same direction. The conversion vector of GPS 3D-displacement projection to the line of sight is  -0.13 0.58 0.80 . InSAR 
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observations have been corrected for atmospheric delays to reduce fluctuations. We select the displacement of the InSAR 

observation with a radius of 50 meters around the GPS station and compare it with the GPS observing results. Sequences of 

corrected InSAR and projected GPS observations are displayed in figure 8. As we can see, the two observing results are 

consistent in both trend and quantity in most circumstances. InSAR monitoring points are distributed throughout the landslide 

surface, but the distribution is uneven and does not coincide with GPS stations. So we put InSAR points and the GPS points 5 

into the grid, and some areas where the observation data is sparse are supplemented by interpolation. According to the post-

failure movement model of a landslide triggered by rainfall infiltration, the relationship between FS and displacement rate is 

expressed as  

1
sin [1 ]

dv
FS

g dt
                                                                                                                                                                     (2) 

where g is the magnitude of gravity acceleration, α is the slope angle(Iverson, 2000). The observed velocities can be converted 10 

into FS using formula (2) when the slope is slipping. Therefore, the converted FS can be used as a set of observations for 

sensitivity analysis and assimilation experiment.  

4.2 Sensitivity analysis Hydrological data 

Statistics of boreholes in the landslide are collected, including data of instruments such as inclinometer, pore water pressure 

gauge, and soil hygrometer are installed in each borehole.  15 

The rainfall data was obtained by bilinear interpolation from the China Ground Meteorological Information Center 

(http://data.cma.cn), “China Ground Precipitation 0.5°×0.5° Grid Data Set (V2.0)”. Hydraulic conductivity calculated by the 

recording speed of the drawdown standpipe. Hydraulic parameters such as saturated soil water content, soil bulk density, are 

obtained by collecting local geotechnical samples.  

One parameter can be estimated according to the observation data. Due to the dynamic change of shear strength determines 20 

the equilibrium state of the soil, we choose the shear strength indicators as parameters for the real-time update. The initial 

value and trend of some parameters in landslide evolution are usually difficult to exactly determine. Before the process 

of data assimilation, sensitivity analysis is necessary to determine the initial values of shear strength indicators. In this work, 

friction angle (φ), is selected to conduct the sensitivity analysis. the shear strength of the soil is changed by changing the 

internal friction angle to calculate the value that matches the observed data. Other parameters are fixed remain unchanged 25 

while the friction angle shear strength is adjusted from minimum to maximum investigated. Since the true value of FS is 

unknown, and the accuracy of the observations is relatively high, we compare the assimilation results with observations. The 

root means square difference (RMSD) of all grid cells is used as the evaluation of sensitivity analysis matching.  

obs 2

,

1
= ( ( ) )k ij k ij

i jp

RMSD FS FS
N

                                                                                                                                          (3) 
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where ( )FS    is the FS calculated by TRIGRS program using parameter φ, obsFS  is the converted FS from GPS/InSAR 

observations, pN  is the total number of grid points, i, j are row and column number, respectively. Figure 7 shows the RMSD 

sequences of the 3 landslide blocks calculated by sensitivity analysis of φ. The result shows that the model is best performed 

when initial friction angles of 3 blocks are19.2 , 22.0 , 22.2  , respectively.  

4.3 Assimilation experiment 5 

In order to facilitate the realization of the experiment, the FS is used as an assimilation variable for one-dimensional data 

assimilation experiments. The assimilation experiment starts on the first day of observation data and occurs daily using the 

improved PF. If there is observation data on the current day, the assimilation is performed, otherwise, only the model recursion 

is performed. The friction angle is updated at the same time of each assimilating calculation with formula (4). 

1

ˆ
N

i i

k k k

i

w 


                                                                                                                                                                              (4) 10 

in which ˆ
k  is the estimation of φ at step k, i

k  is the ith sample of φ in particle filtering, 
iw  is the corresponding sample 

weight.  

The FS results of background model and assimilation output are illustrated in figure 9. Compared with the model output, there 

is a significant change in the safety factor after assimilation. In the background of the TRIGRS program, the only changing 

parameter is rainfall, so the model output results have small fluctuations and gently decreases with time. Assimilation results 15 

are more dependent on observations. Correction of FS after assimilation relative to the model output is shown in figure 10, 

and it shows the distribution and change of assimilation corrections. As the assimilation progresses, the correction amount 

shows an increasing trend. This is because the model prediction error accumulates and its deviation from the actual value is 

getting larger. After statistics, all grid results after assimilation with Fs less than 1.0 are closer to the observed value than the 

model results. 20 

Figure 11 shows sequences of model output and assimilated results of three grid cells randomly selected from Block I, II, III, 

respectively. It can be seen that the change tracks of FS are corrected by observations obviously. Since rainfall is the only 

variable input parameter in the background model, the TRIGRS output FS sequences present relatively stable downward trends. 

Although significant fluctuations are obvious in observations and are propagated into assimilation results, the assimilation 

series has been significantly improved. The RMSD sequence of assimilation output FS on the whole landslide calculated by 25 

the formula (3) is shown in figure 12. Its maximum value is 0.084 at the second step of assimilation, and the minimum is 0.026 

in the last several steps. Overall, with the assimilation proceeding, the RMSD of results tends to become smaller and its 

sequence gradually becomes stable.  

The friction angle (φ) is a parameter to be investigated in this experiment, so the distribution and the changes are displayed in 

figure 13 and time series of the 3 grid cells are shown in figure 14. In the assimilation progresses, the change of the internal 30 

friction angle is mainly affected by the actual soil water content and deviation of other initial parameters. 
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Convert the assimilated FS into annual average deformation rate using formula (1), its distribution map is as figure 15 (a) 

shows. Figure 15 (b) is the observed deformation rate map. Groundwater pressure head ( ) is an important parameter in slope 

stability analysis. In this experiment,   is also considered as an output parameter. Figure 16 demonstrates the distribution of 

  and its change with assimilation time. The   time series of the above 3 points and the rainfall sequence is illustrated in 

figure 17. There is a certain correlation between rainfall and pressure head series, and the correlation coefficients of the three 5 

points are 0.384, 0.323 and 0.314. They exhibit a medium correlation because the correlation coefficient is also affected by 

the variance of the observed data, and the experimental observation data variance is relatively large. 

5 Conclusion and discussion 

Data assimilation is a method that can combine mechanism models with observational data. In data assimilation fields, particle 

filtering is becoming increasingly popular since it can help to solve non-linear and non-Gaussian problems efficiently. In this 10 

study, data assimilation with an improved particle filtering algorithm is applied to landslide model and observation data 

processing. TRIGRS model is used as the background, GPS and InSAR monitoring data as input observation in the experiment. 

Results suggest that the fs sequence of TRIGRS output decreases continuously with time and the assimilation can effectively 

correct the FS of the model output so that it does not deviate too much from the actual. The RMSD of FS indicates the 

assimilation results can correct the estimation of TRIGRS output close to actual observations. The experiment also examined 15 

the changes of soil friction angle and the groundwater pressure head which can help to analyze the soil water content and slope 

stability in the landslide body.  

This paper provides an approach to apply data assimilation method to stability analysis and parameter update and feedback in 

a landslide. Landslide data assimilation experiments have many directions for further research, such as better mathematical 

models, more comprehensive and high-precision observations, and more excellent assimilation algorithms.  20 
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Figures 

 

Figure 1. Location of Xishancun Landslide in the red rectangle and its location in China. 
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Figure 2. The top view and blocks of the study area. 
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Figure 3. Distribution of soil thickness and groundwater depth in the grid. (a) shows the soil thickness of the landslide, 

(b) shows the groundwater depth. The x-axis and y-axis represent the number of columns and the number of rows, 

respectively. 
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Figure 4. Location map of GPS monitoring stations and boreholes. GPS01-GPS04 are monitoring stations on the 

landslide surface, GPS00 is the base station built on bedrock. BH01-BH03 are boreholes.  
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Figure 5. Displacement series of the 4 GPS monitoring stations. (a), (b) and (c) are the figures of displacements in the 

north, east and upper directions respectively, (d) is the total displacements figure. 
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Figure 6. Errors in relative positioning of GPS monitoring points in N, E, U and baseline directions.  
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Figure 7. Displacement rate map of Xishancun area monitored by Sentinel-1 data. 
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Figure 8. Comparison of GPS and INSAR monitoring displacement sequences in LOS direction. 
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Figure 9. Comparison of background model output results and assimilation results. The maps in the first line are 

TRIGRS output results, and those in the second line are assimilation results. 
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Figure 10. Correction of FS after assimilation relative to the model output.  
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Figure 11. Model and assimilation sequences of 3 points selected from Block I, II, III, respectively. 
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Figure 12. The RMSD sequence of assimilation output FS related on observations. 
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Figure 13. The distribution of friction angle and its change with assimilation time. There are obvious boundaries in 

the distribution map because the TRIGRS program divides different blocks into zones. 
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Figure 14. Friction angle time series of three points after assimilation. 
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Figure 15. Distributions of annual deformation rate: (a) Calculated by the assimilated FS (Landslide area); (b) 

Observed deformation results (Observation coverage area).  
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Figure 16. The distribution of groundwater pressure head and its change with time. 
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Figure 17. The groundwater pressure head time series of the three points and accumulated rainfall sequence.  

 


