Supplemental Information: *Reconstructing patterns of coastal risk in space and time along the US Atlantic Coast, 1970–2016*

Scott B. Armstrong¹ and Eli D. Lazarus¹

¹Environmental Dynamics Lab, School of Geography & Environmental Science, University of Southampton, UK

Correspondence to: Eli Lazarus (E.D.Lazarus@soton.ac.uk); Scott Armstrong (S.B.Armstrong@soton.ac.uk)

Supplemental Figures

Figure S1. Sensitivity analysis. (a) Spread of mean vulnerability and (b) mean risk, for chosen vulnerability parameters (solid black), and parameters that create the maximum (dashed black) and minimum (dotted black) mean vulnerability. (c) Spread of mean vulnerability and (d) mean risk, using chosen vulnerability parameters without V_{bn} (solid red), with V_{bn} calculated from 1970 (dashed red), and V_{bn} calculated from 1930 (dashed red).
Figure S2 – Total exposure over time for 51 coastal counties in $USD2018 (red, left axis), as a proportion of all US counties (black dashed, right axis).
Supplemental Tables

Table S1. Tide gauges used to calculate sea-level change rates.

<table>
<thead>
<tr>
<th>Tide Gauge</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar Harbor, Frenchman Bay, ME</td>
<td>44.3917</td>
<td>-68.205</td>
</tr>
<tr>
<td>Boston, MA</td>
<td>42.3533</td>
<td>-71.0533</td>
</tr>
<tr>
<td>Woods Hole (Ocean. Inst.), MA</td>
<td>41.5233</td>
<td>-70.6717</td>
</tr>
<tr>
<td>Newport, RI</td>
<td>41.505</td>
<td>-71.3267</td>
</tr>
<tr>
<td>Montauk, NY</td>
<td>41.0483</td>
<td>-71.96</td>
</tr>
<tr>
<td>New York (The Battery), NY</td>
<td>40.7</td>
<td>-74.0133</td>
</tr>
<tr>
<td>Sandy Hook, NJ</td>
<td>40.4667</td>
<td>-74.0083</td>
</tr>
<tr>
<td>Atlantic City, NJ</td>
<td>39.355</td>
<td>-74.4183</td>
</tr>
<tr>
<td>Lewes (Breakwater Harbor), DE</td>
<td>38.7817</td>
<td>-75.12</td>
</tr>
<tr>
<td>Kiptopeke Beach, VA</td>
<td>37.165</td>
<td>-75.9883</td>
</tr>
<tr>
<td>Wilmington, NC</td>
<td>34.2267</td>
<td>-77.9533</td>
</tr>
<tr>
<td>Charleston I, SC</td>
<td>32.7817</td>
<td>-79.925</td>
</tr>
<tr>
<td>Fort Pulaski, GA</td>
<td>32.0333</td>
<td>-80.9017</td>
</tr>
<tr>
<td>Fernandina, FL</td>
<td>30.6717</td>
<td>-81.465</td>
</tr>
<tr>
<td>Key West, FL</td>
<td>24.555</td>
<td>-81.8067</td>
</tr>
</tbody>
</table>

All tide gauge data from Permanent Service for Mean Sea Level (PSMSL, 2018)

Table S2. LiDAR files used to calculate beach slope.

<table>
<thead>
<tr>
<th>Data files used</th>
<th>USGS LiDAR files</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS LiDAR files</td>
<td>10CNT07_morphology (FL-NC)</td>
</tr>
<tr>
<td></td>
<td>13CNT05_morphology (NY-NH)</td>
</tr>
<tr>
<td></td>
<td>14CNT01_morphology (SC-NY)</td>
</tr>
<tr>
<td></td>
<td>2016-368-DD_morphology (FL)</td>
</tr>
</tbody>
</table>

Lidar data from Doran et al., (2017).
Table S3. Census data files used to calculate exposure.

<table>
<thead>
<tr>
<th>Decade</th>
<th>Data File</th>
<th>Source Code</th>
<th>NHGIS code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>ds94_1970_county</td>
<td>NT14A</td>
<td>CBH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NT40 and</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>ds104_1980_county</td>
<td>NT42</td>
<td>C8K and C8M</td>
</tr>
<tr>
<td>1990</td>
<td>ds120_1990_county</td>
<td>NH24</td>
<td>ESV</td>
</tr>
<tr>
<td>2000</td>
<td>ds151_2000_county</td>
<td>NH078A</td>
<td>GB9</td>
</tr>
<tr>
<td>2010*</td>
<td>ds201_20135_2013_county</td>
<td>B25082</td>
<td>UMR</td>
</tr>
</tbody>
</table>

* use 2009-2013 5-year community survey in place of 2010 for coverage

Table S4. Sensitivity testing of the effect of changing variables in Eq. (5) on the vulnerability due to beach width (V_{bw}). Factors are: maximum beach width (x_0), fraction of beach width affected by the nonlinear rate (μ), and the nonlinear rate (θ). Highlighted rows indicate the maximum and minimum mean V_{bw}, and the chosen set of variables, all of which are plotted on Figure S1.

<table>
<thead>
<tr>
<th>x_0</th>
<th>μ</th>
<th>θ</th>
<th>V_{bw} max</th>
<th>V_{bw} median</th>
<th>V_{bw} max variance</th>
<th>Figure S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.75</td>
<td>0.75</td>
<td>0.879921486</td>
<td>1</td>
<td>0.238276168</td>
<td>Max</td>
</tr>
<tr>
<td>25</td>
<td>0.66</td>
<td>0.75</td>
<td>0.837619876</td>
<td>0.973178273</td>
<td>0.228515365</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.75</td>
<td>0.5</td>
<td>0.812977086</td>
<td>1</td>
<td>0.229546306</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.66</td>
<td>0.5</td>
<td>0.764614503</td>
<td>0.896672321</td>
<td>0.219268978</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.75</td>
<td>0.75</td>
<td>0.757426568</td>
<td>0.812667632</td>
<td>0.200000984</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.5</td>
<td>0.75</td>
<td>0.724148105</td>
<td>0.766012983</td>
<td>0.195911534</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.66</td>
<td>0.75</td>
<td>0.694330452</td>
<td>0.71098647</td>
<td>0.179730302</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.75</td>
<td>0.5</td>
<td>0.684253691</td>
<td>0.689489093</td>
<td>0.191766161</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.75</td>
<td>0.75</td>
<td>0.669695312</td>
<td>0.667161775</td>
<td>0.16489023</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.75</td>
<td>0.25</td>
<td>0.663239488</td>
<td>0.741045746</td>
<td>0.200831919</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.66</td>
<td>0.5</td>
<td>0.659276382</td>
<td>0.651402958</td>
<td>0.187095246</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.66</td>
<td>0.5</td>
<td>0.62860932</td>
<td>0.61837553</td>
<td>0.174637611</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.66</td>
<td>0.25</td>
<td>0.623883198</td>
<td>0.661900729</td>
<td>0.19273165</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.66</td>
<td>0.75</td>
<td>0.604522644</td>
<td>0.600846261</td>
<td>0.141685799</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.75</td>
<td>0.5</td>
<td>0.603277433</td>
<td>0.557908844</td>
<td>0.15263847</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>0.75</td>
<td>0.572033801</td>
<td>0.5462328</td>
<td>0.144798312</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.33</td>
<td>0.75</td>
<td>0.567529465</td>
<td>0.545899862</td>
<td>0.157351573</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.75</td>
<td>0.25</td>
<td>0.551923387</td>
<td>0.46573575</td>
<td>0.176237297</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.66</td>
<td>0.5</td>
<td>0.54607491</td>
<td>0.506611107</td>
<td>0.137084567</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.66</td>
<td>0.5</td>
<td>0.54562914</td>
<td>0.495041802</td>
<td>0.177123537</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.33</td>
<td>0.75</td>
<td>0.523770133</td>
<td>0.46627757</td>
<td>0.156396001</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>0.5</td>
<td>0.522220392</td>
<td>0.472430072</td>
<td>0.142790918</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.66</td>
<td>0.25</td>
<td>0.510965068</td>
<td>0.421488275</td>
<td>0.162509334</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.75</td>
<td>0.1</td>
<td>0.490515605</td>
<td>0.405481161</td>
<td>0.178020267</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.25</td>
<td>0.75</td>
<td>0.487472406</td>
<td>0.426503224</td>
<td>0.14579159</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.75</td>
<td>0.75</td>
<td>0.486469537</td>
<td>0.474650386</td>
<td>0.105978907</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.75</td>
<td>0.25</td>
<td>0.483897448</td>
<td>0.370947148</td>
<td>0.144004668</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.66</td>
<td>0.1</td>
<td>0.466774318</td>
<td>0.36603894</td>
<td>0.174628282</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.25</td>
<td>0.5</td>
<td>0.454519147</td>
<td>0.379043029</td>
<td>0.146138187</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.33</td>
<td>0.25</td>
<td>0.446413944</td>
<td>0.335029587</td>
<td>0.154193301</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>0.5</td>
<td>0.44219094</td>
<td>0.394234119</td>
<td>0.104064359</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.66</td>
<td>0.25</td>
<td>0.441020523</td>
<td>0.331600214</td>
<td>0.127097143</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.33</td>
<td>0.75</td>
<td>0.433541881</td>
<td>0.364941853</td>
<td>0.115762651</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>0.25</td>
<td>0.432685403</td>
<td>0.342794407</td>
<td>0.138001607</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.5</td>
<td>0.1</td>
<td>0.42061617</td>
<td>0.269679155</td>
<td>0.164919202</td>
<td></td>
</tr>
<tr>
<td>x_0</td>
<td>μ</td>
<td>θ</td>
<td>$V_{bw\text{ max mean}}$</td>
<td>$V_{bw\text{ max median}}$</td>
<td>$V_{bw\text{ max variance}}$</td>
<td>Figure S1</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>25</td>
<td>0.75</td>
<td>0.1</td>
<td>0.40339037</td>
<td>0.266815988</td>
<td>0.154000228</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.33</td>
<td>0.5</td>
<td>0.400665031</td>
<td>0.33625212</td>
<td>0.115907988</td>
<td>Chosen</td>
</tr>
<tr>
<td>50</td>
<td>0.75</td>
<td>0.05</td>
<td>0.400298363</td>
<td>0.237574677</td>
<td>0.167206633</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.25</td>
<td>0.25</td>
<td>0.396462905</td>
<td>0.280872694</td>
<td>0.14662032</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.66</td>
<td>0.05</td>
<td>0.38414404</td>
<td>0.22330029</td>
<td>0.162659349</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.66</td>
<td>0.1</td>
<td>0.378487693</td>
<td>0.244388944</td>
<td>0.144360101</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.25</td>
<td>0.75</td>
<td>0.368369213</td>
<td>0.287254869</td>
<td>0.10793547</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>0.25</td>
<td>0.362592829</td>
<td>0.261650109</td>
<td>0.099731286</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.33</td>
<td>0.1</td>
<td>0.36064439</td>
<td>0.198813102</td>
<td>0.150159303</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.33</td>
<td>0.75</td>
<td>0.355942308</td>
<td>0.315993987</td>
<td>0.075004785</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.5</td>
<td>0.05</td>
<td>0.35076797</td>
<td>0.171423949</td>
<td>0.154207676</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.75</td>
<td>0.1</td>
<td>0.343996607</td>
<td>0.194113736</td>
<td>0.11732885</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.25</td>
<td>0.5</td>
<td>0.334362508</td>
<td>0.244276109</td>
<td>0.108567792</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.33</td>
<td>0.25</td>
<td>0.341571938</td>
<td>0.248212773</td>
<td>0.115807823</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.25</td>
<td>0.1</td>
<td>0.331168061</td>
<td>0.16333967</td>
<td>0.146465666</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>0.1</td>
<td>0.327759773</td>
<td>0.20353052</td>
<td>0.125771424</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.33</td>
<td>0.5</td>
<td>0.32671843</td>
<td>0.274833569</td>
<td>0.074748399</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.66</td>
<td>0.1</td>
<td>0.317907784</td>
<td>0.175986812</td>
<td>0.107855831</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.75</td>
<td>0.05</td>
<td>0.317203403</td>
<td>0.164986448</td>
<td>0.130849361</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.33</td>
<td>0.05</td>
<td>0.315338453</td>
<td>0.131957875</td>
<td>0.147441761</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.25</td>
<td>0.05</td>
<td>0.301263407</td>
<td>0.113385606</td>
<td>0.144976684</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.66</td>
<td>0.05</td>
<td>0.29083839</td>
<td>0.145479896</td>
<td>0.12448709</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.25</td>
<td>0.25</td>
<td>0.298695014</td>
<td>0.185640676</td>
<td>0.10953098</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.25</td>
<td>0.75</td>
<td>0.294285612</td>
<td>0.242770133</td>
<td>0.065338968</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.33</td>
<td>0.1</td>
<td>0.27417866</td>
<td>0.187328122</td>
<td>0.07399774</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.33</td>
<td>0.25</td>
<td>0.272757927</td>
<td>0.13747646</td>
<td>0.112796148</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.25</td>
<td>0.5</td>
<td>0.272146311</td>
<td>0.20968921</td>
<td>0.065503813</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>0.1</td>
<td>0.268476398</td>
<td>0.143761168</td>
<td>0.088324508</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.5</td>
<td>0.05</td>
<td>0.266871281</td>
<td>0.117621491</td>
<td>0.115576825</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.75</td>
<td>0.05</td>
<td>0.261384038</td>
<td>0.122358182</td>
<td>0.0960952</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.25</td>
<td>0.1</td>
<td>0.246927408</td>
<td>0.101129683</td>
<td>0.109105535</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.66</td>
<td>0.05</td>
<td>0.243437051</td>
<td>0.112841924</td>
<td>0.088826496</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.33</td>
<td>0.05</td>
<td>0.232655666</td>
<td>0.083737609</td>
<td>0.109476288</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.25</td>
<td>0.25</td>
<td>0.232343454</td>
<td>0.15235307</td>
<td>0.065687065</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.25</td>
<td>0.05</td>
<td>0.216655523</td>
<td>0.064283981</td>
<td>0.106150414</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.33</td>
<td>0.1</td>
<td>0.211741291</td>
<td>0.108617309</td>
<td>0.070288879</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.5</td>
<td>0.05</td>
<td>0.209512152</td>
<td>0.095924132</td>
<td>0.075461562</td>
<td></td>
</tr>
<tr>
<td>x_0</td>
<td>μ</td>
<td>θ</td>
<td>V_{bw} max mean</td>
<td>V_{bw} max median</td>
<td>V_{bw} max variance</td>
<td>Figure S1</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>100</td>
<td>0.25</td>
<td>0.1</td>
<td>0.185042417</td>
<td>0.090458009</td>
<td>0.064239038</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.33</td>
<td>0.05</td>
<td>0.17299541</td>
<td>0.064657731</td>
<td>0.064948939</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.25</td>
<td>0.05</td>
<td>0.155851353</td>
<td>0.052276218</td>
<td>0.061316482</td>
<td>Min</td>
</tr>
</tbody>
</table>