Reponses to editor’s comments on “Nature-Based Solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area” by Laddaporn Ruangpan et al.

I received now the two review reports of your revised manuscript “Nature-Based Solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area”.

One reviewer had not further suggestions and the second one addressed several missing papers which should be considered in the review.

Authors’ response: Thank you for your encouragement and suggestions. Your concerns are addressed in this response letter and the manuscript revised accordingly. Please find our point-by-point response below.

1. Comments from the editor: Please consider if it is possible to extend your literature search also for the last months and integrated the newest publication if there are only few publications.

Authors’ response: The authors have extended literature search for the last months as well as integrated the newest relevant publication into the paper (e.g. page 7 line 1, page 9 line 21 and 25, page 10 line 13, page 15 line 25, page 16 line 7, and page 17 line 4 and line 9)

2. Comments from the editor: However, I checked the mentioned special issue (the last mentioned editorial paper) and identified that all papers of the special issue should appear in your search because they were published before December 2018, the journal is included in Scopus and they should meet your search criteria. Therefore, I kindly ask you to clarify this issue.

Authors’ response: Thank you for the suggestion. The authors have checked the mentioned editorial paper. We see that although the editorial paper and special issues are about Nature-Based Solutions, many articles do not use the keywords (‘Nature-Based Solution’ or its sister terms) in the title, abstract and keywords, and so do not meet the search criteria. Therefore, these papers were not found in the search result.

Although some articles did meet the search criteria, they were excluded from the review as they focus more on land degradation (e.g., sediment trapping, hydro-geochemical, nutritional, and eco-physiological constraints) than hydro-meteorological risk reduction.

3. Comments from the editor: Please also address the comment regarding the Sustainable Development Goals as you addressed this also in your introduction.

Authors’ response: The authors now have included the Sustainable Development Goals (SDG) in Section 4.6 “Multiple benefits of NBS” page 16 line 6.

Authors’ change in the revised manuscript:
The literature on NBS and its sister concepts increasingly refers to multiple benefits on social, economic and environmental enhancements. The reason for that is that NBS are regarded as sustainable solutions that use ecosystem services to provide multiple benefits for human well-being and the environment, which differs from grey infrastructure. Moreover, these multiple benefits of NBS can help to achieve many of the 2030 Agenda for Sustainable Development Goals (SDGs). The recent publication shows how NBS can contribute to achieving the SDGs (Seifollahi-Aghmouni et al., 2019). This publication reports that wetland ecosystem services in Sweden positively interact with SDG 1 (no poverty), SDG 2 (zero hunger), SDG 3 (good health and well-being), SDG 6 (clean water and sanitation), SDG 7 (affordable and clean energy), 11 (sustainable cities and communities), SDG 12 (responsible consumption and production), SDG 13 (climate action), SDG 14 (life below water) and SDG 15 (life on land). One of the processes that could provide these benefits is to give more significant consideration to landscape function, adaptive and multi-functionality design (Lennon et al., 2014; Vojinovic et al., 2017), restoring naturally occurring ecosystems and promoting desirable soil (Keesstra et al., 2018).

The literature to date shows that multiple challenges can be continually addressed through NBS. These include reducing flood risk (Song et al., 2018), storing and infiltrating rainfall run-off, delaying and reducing surface runoff, reducing erosion and particulate transport (Loperfido et al., 2014), recharging groundwater discharge, reducing pollution from surface water (Donnell et al., 2018), increasing nutrient retention and removal (Loperfido et al., 2014), maintaining soil moisture, and enhancing vegetation growth. Such benefits help in reaching SDG 6 - ensuring sustainable water management.

Beyond water management, the case for NBS includes their ability to provide additional benefits in improving socio-economic aspects (SDG 11) and human well-being (SDG 3) through recreational areas and aesthetic value (Song et al., 2018), as well as encouraging tourism through the access to nature (Sutton-Grier et al., 2018). Wheeler et al., (2010) quantified the volume and intensity of children’s physical activity in greenspace and found that time in greenspace is more likely to lead to greater activity intensity amongst children. The use of NBS can bring economic benefits (SDG 1 and SDG 8) in different ways, such as reduced/prevented damage costs from hydro-meteorological events, energy savings from the reduction of stormwater that typically needs to be treated in a public sewerage system and carbon savings from reduced building energy consumption (heating and cooling) (Soares et al., 2011). Such energy and carbons savings will help contribute to SDG 13.

4. Comments from the editor: Furthermore, I highly recommend to address in the discussion the pro and cons of your systematic search design because two reviewers comments on the drawbacks and missing crucial papers.

Authors’ response: In the revised version, the authors have explained the pros and cons of systematic review in the first paragraph of the conclusion.

Authors’ change in the revised manuscript:

The present paper provides a critical review of the literature and identifies future research prospects based on the current knowledge gaps in the area of Nature-Based Solutions for hydro-meteorological risk reduction by using a systematic review. The systematic review method helps to limit the scope of the work and also provides useful direction for defining research gaps, as articles can be collected from a board range of sources. However, there are
some disadvantages of systematic reviews. For example, a finite selection of keywords will introduce gaps into the list of articles to be reviewed. Also, important grey literature (e.g. reports and books) could be overlooked. Finally, poorly written abstracts may cause an article to be excluded from the review.

5. **Comments from the editor:** Please find attached the pdf-file with several comments. Please check the format if it is only highlighted in yellow and no further comments are provided

Authors’ response: In the revised version, authors have cooperated all the comments that suggest by the editor.

6. **Comments from the editor:** I kindly ask you (the second time) to apply the guidelines of NHESS for manuscript preparation (e.g. missing: author contribution, competing interests; physical dimensions and units (e.g. table 4 & 5), figure captions, …).

Authors’ response: In the revised version, authors have cooperated and carefully applied the guidelines of NHESS for manuscript preparation.

Authors’ change in the revised manuscript:

Author contributions. LR and ZV designed the objectives of the review. LR selected, read and analysed the articles. LR, ZV, SDS and LSL were involved in the production of the paper. LR and ZV have produced the figures. The other authors have contributed to the paper with comments and suggestions. All authors contributed to the writing, editing and revision of the paper.

Competing interests. The authors declare that they have no conflict of interest.

7. **Comments from the editor:** In the track-change version I could not find the required changes of language editing as requested for the last version. Please provide here further information

Authors’ response: The authors have to apologise for this. Changes were made from a native English speaker, and included in the submitted version. However, these changes were mistakenly omitted from the tracked-change version. For clarity, the ‘correct’ tracked change version of version 3 is included below as well as the tracked change version of version 4.
The tracked change version of version 4
Track changes document of version 4

Nature-Based Solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area

Laddaporn Ruangpan1,2, Zoran Vojinovic1,3, Silvana Di Sabatino4, Laura Sandra Leo4, Vittoria Capobianco5, Amy M. P. Oen5, Michael E. McClain1,2, Elena Lopez-Gunn6

\begin{itemize}
\item 1IHE Delft Institute for Water Education, Delft, the Netherlands
\item 2Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, the Netherlands
\item 3College for Engineering, Mathematics and Physical Sciences, University of Exeter, UK
\item 4Department of Physics and Astronomy, University of Bologna, Italy
\item 5Norwegian Geotechnical Institute, Norway
\item 6ICATALIS, Spain
\end{itemize}

\textit{Correspondence to}: Laddaporn Ruangpan (L.Ruangpan@tudelft.nl)

\textbf{Abstract.} Hydro-meteorological risks due to natural hazards such as severe floods, storm surges, landslides, and droughts are causing impacts on different sectors of society. Such risks are expected to become worse given projected changes in climate, degradation of ecosystems, population growth and urbanisation. In this respect, Nature-Based Solutions (NBS) have emerged as effective means to respond to such challenges. NBS is a term used for innovative solutions that are based on natural processes and ecosystems to solve different types of societal and environmental challenges. The present paper provides a critical review of the literature concerning NBS for hydro-meteorological risk reduction and identifies current knowledge gaps and future research prospects. There has been a considerable growth of scientific publications on this topic with a more significant rise taking place from 2007 onwards. Hence, the review process presented in this paper starts by sourcing 16,081,407 articles from Scopus and 14,312,322 articles from Web of Science. The full analysis was performed on 14,643,37 articles. The analysis confirmed that numerous advancements in the area of NBS have been achieved to date. These solutions have already proven to be valuable in providing sustainable, cost-effective, multi-purpose and flexible means for hydro-meteorological risk reduction. However, there are still many areas where further research and demonstration are needed in order to promote their upscaling and replication and to make them become mainstream solutions.

\section{1 Introduction}

There is increasing evidence that climate change and associated hydro-meteorological risk are already causing wide-ranging impacts on the global economy, human well-being, and the environment. Floods, storm surges, landslides, avalanches, hail, windstorms, droughts, heat waves and forest fires are a few examples of hydro-meteorological hazards that pose a significant risk.
Hydro-meteorological risk is the probability of damage due to hydro-meteorological hazards and its interplay with exposure and vulnerability of the affected humans and environments (Merz et al., 2010). Some of the main reasons for such risks are climate change, land use change, water use change and other pressures linked to population growth (Thorslund et al., 2017). The situation is likely to become worse given the projected changes in climate (see for example, EEA, 2017). Therefore, effective climate change adaptation (CCA) and disaster risk reduction (DRR) strategies are needed to mitigate the risks of extreme events and to increase resilience to disasters, particularly among vulnerable populations (Maragno et al., 2018; McVittie et al., 2018).

Since biodiversity and ecosystem services can play an important role in responding to climate-related challenges, both mitigation and adaptation strategies should take into consideration a variety of Green Infrastructure (GI) and Ecosystem-based Adaptation (EbA) measures as effective means to respond to present and future disaster risk (see also EEA, 2015). As such, they are recognized as effective means for CCA and DRR, and for the implementation of the Sustainable Development Goals (SDGs).

In view of the above, many countries are nowadays developing adaptation and mitigation strategies based on GI and EbA to reduce their vulnerability to hydro-meteorological hazards (Rangarajan et al., 2015, EEA, 2015). Nature-Based Solutions (NBS) have been introduced relatively recently. The reason behind for their introduction this is that NBS offer the possibility to work closely with nature in adapting to future changes, reducing the impact of climate change and improving human well-being (Cohen-Shacham et al., 2016). NBS have been the focus of research in several EU Horizon2020 funded projects. Horizon2020 offers new opportunities in the focus area of ‘Smart and Sustainable Cities with Nature based solutions’ (Faivre et al., 2017). Some of these important projects are: Nature4Cites, Naturvation, NAIAD, BiodiverEsA, Inspiration, URBAN GreenUP, UNaLaB, URBINAT, CLEVER Cities, proGIreg, EdiCINET, RECONECT, OPERANDUM, ThinkNature, EKLIPSE and PHUSICOS (nature4cities, 2019). Through these projects, the knowledge of NBS has rapidly grown rapidly and been documented in a considerable body of grey literature (project reports, etc.). On the other hand, the number of scientific studies focused on NBS to reduce hydro-meteorological risk is continuously increasing all over the world.

The aim of this article is to provide a state-of-the-art review of scientific publications on hydro-meteorological risk reduction with NBS to indicate some directions for future research based on the current knowledge gaps. The analysis focuses on the following hydro-meteorological hazards: floods, droughts, storm surges, and landslides. The review addresses both small and large scale interventions and explores available techniques, methods and tools for NBS assessment, while also providing a snapshot of the major socio-economic factors at play in the implementation process. The key objectives and methods of this study are discussed in Section 3, while Section 2 provides a brief overview of concepts and definitions related to NBS either in general or specifically linked to hydro-meteorological risk reduction. Results and conclusions are discussed in Sections 4 and 5 respectively.
2 Overview of definitions and theoretical backgrounds

There are several terms and concepts which have been used interchangeably in the literature to date. In terms of NBS, the two most prominent definitions are from International Union for Conservation of Nature (IUCN) and the European Commission. The European Commission defines Nature-Based Solutions as “Solutions that aim to help societies address a variety of environmental, social and economic challenges in sustainable ways. They are actions inspired by, supported by or copied from nature; both using and enhancing existing solutions to challenges, as well as exploring more novel solutions. Nature-based solutions use the features and complex system processes of nature, such as its ability to store carbon and regulate water flows, in order to achieve desired outcomes, such as reduced disaster risk and an environment that improves human well-being and socially inclusive green growth” (European Commission, 2015). The IUCN has proposed a definition of NBS as “actions to protect, sustainably manage and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously providing human well-being and biodiversity benefits” (Cohen-Shacham et al., 2016). Eggermont et al. (2015) proposed a typology characterising NBS into three types: i) NBS that address a better use of natural/protected ecosystems (no or minimal intervention), which fits with how IUCN frames NBS; ii) NBS for sustainability and multi-functionality of managed ecosystems and iii) NBSs for the design and the management of new ecosystems, which is more representative of the definition given by the European Commission.

NBS is a collective term for innovative solutions to solve different types of societal and environmental challenges, based on natural processes and ecosystems. Therefore, it is considered as an “umbrella concept” covering a range of different ecosystem-related approaches and linked concepts (Cohen-Shacham et al., 2016; Nesshöver et al., 2017), that provides an integrated way to look at different issues simultaneously. Due to the diverse policy origins, NBS terminology has evolved in the literature to emphasize different aspects of natural processes or functions. In this regard, nine different terms are commonly used in the scientific literature in the context of hydro-meteorological risk reduction: Low Impact Developments (LIDs), Best Management Practices (BMPs), Water Sensitive Urban Design (WSUD), Sustainable Urban Drainage Systems (SUDs), Green Infrastructure (GI), Blue-Green Infrastructure (BGI), Ecosystem-based Adaptation (EbA) and Ecosystem-based Disaster Risk Reduction (Eco-DRR). The timeline of each term, based on their appearance in literature is shown in Figure 1 and their definitions are given in Table 1.

The commonalities between NBS and its sister concepts (i.e., GI, BGI, EbA, Eco-DRR) are that they take participatory, holistic, integrated approaches, using nature to enhance adaptive capacity, reduce hydro-meteorological risk, increase resilience, improve water quality, increase the opportunities for recreation, improve human well-being and health, enhance vegetation growth and connect habitat and biodiversity. More information on the history, scope, application and underlying principle of terms of SUDs, LIDs, BMPs, WSUD and GI can be found in Fletcher et al. (2015) while the relationship between NBS, GI/BGI, and EbA is described in detail by Nesshöver et al. (2017).
Although all terms are based on a common idea, which is embedded in the umbrella concept of NBS, differences in definition reflect their historical perspectives and knowledge base that were relevant at the time of the research (Fletcher et al., 2015). The distinguishing characteristic between NBS and its sister concepts is how they address social, economic and environmental challenges (Faivre et al., 2018). Some terms such as SUDs, LIDs, and WSUD refer to NBS that specifically address stormwater management. They use landscape feature to transform the linear approach of conventional stormwater management into a more cyclic approach where drainage, water supply, and ecosystems are treated as part of the same system, mimicking more natural water flows (Liu and Jensen, 2018). GI/BGI focus more on technology-based infrastructures by applying natural alternatives (Nesshöver et al., 2017) for solving a specific activity (i.e., urban planning or stormwater). EbA looks at long-term changes within the conservation of biodiversity, ecosystem services and climate change, while Eco-DRR is more focused on immediate and medium-term impacts from the risk of weather, climate and non-climate-related hazards. EbA is often seen as a subset of NBS that is explicitly concerned with climate change adaptation through the use of nature (Kabisch et al., 2016).From the above discussion, it can be concluded that EbA, Eco-DRR and GI/BGI provide more specific solutions to more specific issues. One key distinction is that unlike the sister concepts, the concept of NBS is more open to different interpretations, which can be useful to encourage stakeholders to take part in the discussion. Moreover, features of NBS provide an alternative to work with existing measures or grey infrastructures. Therefore, it is important to note that very often a combination between natural and traditional engineering solutions (a.k.a. “hybrid” solutions) is likely to produce more effective results than any of these measures alone, especially when their co-benefits are taken into consideration (Alves et al., 2019).

An important advance in the science and practice of NBS is given by the EKLIPSE Expert Working Group, which developed the first version of a multi-dimensional impact evaluation framework to support planning and evaluation of NBS projects. The document includes a list of impacts, indicators and methods for assessing the performance of NBS in dealing with some major societal challenges (EKLIPSE, 2017). Lafortezza et al., (2018) reviewed different case studies around the world where NBS have been applied from micro-scale to macro-scale. Furthermore, an overview of how different NBS measures can regulate ecosystem services (i.e., soil protection, water quality, flood regulation, and water provision) has been carried out by Keesstra et al., (2018).

3 Materials and methodology

The methodology consisted of two phases as schematized in Figure 2. The first phase consisted of the identification of articles satisfying the search criteria discussed in Section 3.1. Next, all articles were screened and filtered based on the selection criteria discussed in section 3.2.
3.1 Search strategy

The review analysis concerned articles from scientific journals written in English. Two main concepts were used in the search: Nature-Based Solutions and hydro-meteorological risk reduction. As the concept of ‘Nature-Based Solutions’ appears under different names (which more or less relate to the same field of research), articles related to LIDs, BMPs, WSUD, SUDs, GI, BGI, EbA and Eco-DRR were included in the identification of relevant articles (see Table 2) The review of hydro-meteorological risk included literature on relevant terms (i.e. disasters, risks, hydrology etc.) and different types of hazards (floods, droughts, storm surges and landslides) (Table 2).

During the construction of the queries, the strings were searched only within index terms and metadata “titles, abstract, and keywords” in the Scopus database. The search terms for the two concepts were linked with the Boolean operator “AND” while the Boolean operator “OR” was used to link between possible terms (Table 2). An example of a protocol is shown below:

```
“TITLE-ABS-KEY ( "Nature-based solutions" OR "Nature based solutions" OR "Nature Based Solutions" OR "Nature-Based Solutions" OR "Low impact development" OR "Sustainable Urban Drainage Systems" OR "Water Sensitive Urban Design" OR "Best Management Practices" OR "Green infrastructure" OR "Green blue infrastructure" AND "flood") AND (LIMIT-TO (DOCTYPE, "ar") OR LIMIT-TO (DOCTYPE, "ch") OR LIMIT-TO (DOCTYPE, "re") OR LIMIT-TO (DOCTYPE, "bk") ) AND (LIMIT-TO (LANGUAGE, "English") )”
```

The time window selected for the review process was from 1st January 2007 to 1st December 2018, 19th November 2019. 16084407 articles published in scientific journals were found in the Scopus database and 14314232 were found in the Web of Science database. The articles from both databases were combined to 2639-3089 articles. Duplicate articles were removed, resulting in a total of 4204-1439 articles to be considered for further evaluation.

3.2 Selection process

As stated in the introduction, this study aims at reviewing the state-of-the-art of the research on NBS that specifically address hydro-meteorological risk reduction. In this regard, the key objectives of the present review work were carefully formulated as follows:

1) To assess the state-of-the-art in research concerning both small and large scale NBS for hydro-meteorological risk reduction;

2) To review the use of techniques, methods and tools for planning, selecting, evaluating and implementing NBS for hydro-meteorological risk reduction;

3) To review the socio-economic influence in the implementation of NBS for hydro-meteorological risk reduction as well as their multiple benefits, co-benefits, effectiveness and costs;

4) To identify trends, knowledge gaps and proposed future research prospects with respect to the above three objectives.
These key objectives were defined for the review with the intention that the results could be both quantitative and qualitative.

The 14394204 articles resulting from the search query were thus evaluated with respect to these objectives, and those found of little or no relevance with the topic removed. This selection process involved a set of progressive steps as schematized in Figure 2.

Initially, all articles were analysed on the basis of reading titles and keywords and evaluating their relation to the search terms. Articles were discarded if their title and keywords were considered of little or no relevance to the key objectives. This step served to reduce the number of articles from 14394204 to 43380. Secondly, a more in-depth analysis was conducted, based on reading the abstract of each article selected in the previous step. The criteria at this step was that the abstract should discuss hydro-meteorological risk reduction. For example, if the abstract focused more on water quality than risk, that paper was excluded. This step served to reduce the number of articles from 433 to 48205. Finally, articles were read in full to identify those that were relevant to the review objectives. Any studies appearing to meet the key objectives (dealing with subjects such as effectiveness of NBS, techniques, method and tools for planning, and others subjects relevant to the key objectives) were included in the review. As a result, the entire selection process resulted in a total of 146437 articles relevant to the objectives of the present review.

4 Findings

4.1 Lesson from research on small and large scale NBS for hydro-meteorological risk reduction

In this review, NBS for hydro-meteorological risk reduction have been divided into small and large scale solutions (Fig.3). “Small scale NBS” are usually referred to as NBS at the urban or local scale (i.e., buildings, streets, roofs, or houses), while NBS in rural areas, river basins and at the regional scale are referred to as “large scale NBS” (Fig.3.)

4.1.1 Research on small scale NBS for hydro-meteorological risk reduction

Small scale NBS are usually applied to a specific location such as a single building or a street. However, for some cases, a single NBS is not sufficient to control a large amount of runoff. Therefore, this review discusses the application and effectiveness of both individual NBS and multiple-NBS combinations. There are 4139 articles that have been reviewed on the effectiveness of small scale NBS (Table 3). A majority of these (3128 articles) discuss the effectiveness of a single/individual NBS site, while only 13 articles discuss the effectiveness of multiple NBS sites (around 313 percent). A summary of effectiveness, co-benefits and cost of NBS measures at small scale is shown in Table 3.

To date, various types of single NBS sites have been studied with objectives such as reduction of the flood peak (Carpenter and Kaluvakolanu, 2011; Ercolani et al., 2018; Liao et al., 2015; Mei et al., 2018; Yang et al., 2018), delay/attenuation of the flood peak (Ishimatsu et al., 2017), reduction of volume of combined sewer overflows (Burszta-Adamiak and Mrowiec, 2013).
and reduction of surface runoff volume (Lee et al., 2013; Shafique and Kim, 2018). The review found just three articles that discuss the reduction of drought risk by using NBS. Lottering et al. (2015) used NBS to reduce water consumption in suburban areas, while Radonic (2019) showed that rainwater harvesting can help reduce household water consumption. Finally, Wang et al., (2019) demonstrated that forests can significantly mitigate drought impacts and protect water supplies for crop irrigation.

The most common NBS measures in urban areas appear to be intensive green roofs (Burszta-Adamiak and Mrowiec, 2013; Carpenter and Kaluvakolanu, 2011; Ercolani et al., 2018), extensive green roofs (Cipolla et al., 2016; Lee et al., 2013), rain gardens (Ishimatsu et al., 2017), rainwater harvesting (Khastagir and Jayasuriya, 2010), dry detention ponds (Liew et al., 2012), permeable pavements (Shafique et al., 2018), bio-retention (Khan et al., 2013; Olszewski and Allen, 2013), vegetated swales (Woznicki et al., 2018) and trees (Mills et al., 2016). However, the authors of these studies investigated the performance of such measures individually (i.e. at the specific/local/single site) without evaluating them in combination with other NBS sites or in hybrid combinations.

The literature to date acknowledges that the effectiveness of NBS greatly depends on the magnitude and frequency of rainfall events. Green roofs are recognized in reducing peak flows more effectively for smaller magnitude frequent storms than for larger magnitude infrequent storms (see for example, Ercolani et al., 2018). There are also reports that rain gardens are more effective in dealing with small discharges of rainwater (Ishimatsu et al., 2017). Swales and permeable pavements are more effective for flood reduction during heavier and shorter rainfall events. Zölch et al. (2017) suggested that the effectiveness of NBS should be directly linked to their ability to increase (as much as possible) the storage capacities within the area of interest, while using open spaces that have not been used previously and/or while providing benefits to other areas for urban planning.

Several studies evaluated the performance of multiple (or combined) NBS measures (i.e., a train of NBS) (See for example Damodaram et al., 2010; Dong et al., 2017; Huang et al., 2014; Luan et al., 2017). One of the most successful international projects in combining several NBS measures at the urban scale is the “Sponge City Programme (SCP)” in China. The SCP project was commissioned in 2014 with the aim to implement both concepts and practices of LIDs/NBS as well as various comprehensive urban water management strategies (Chan et al., 2018). Nowadays, the concept (‘Sponge City’) is widely used for a city increases resilience to climate change. It also combines several systems, such as source control system, urban drainage system, and emergency discharge system.

Porous pavement appears as one of the most popular measures suitable to be combined with other NBS for urban run-off management. Examples of this are described in Hu et al. (2017) who used inundation modelling to evaluate the effectiveness of rainwater harvesting and pervious pavement as retrofitting technologies for flood inundation mitigation of an urbanized watershed. Damodaram et al. (2010) concluded that the combination of rainwater harvesting and permeable pavements is likely to be more effective than pond storage for small storms, while the pond is likely to be more effective to manage runoff from the more intense storms.
Several studies argue that multiple NBS measures can lead to a more significant change in runoff regime and more effective long term strategies than single NBS measures (Webber et al., 2018). For example, Wu et al. (2018) simulated eight scenarios changing the percentage of combined green roof and permeable pavement in an urban setting. The results show that when green roofs and permeable pavements are applied at all possible locations, a 28% reduction in maximum inundation can be obtained. In comparison, scenarios implementing either green roofs or permeable pavements alone at all possible areas experienced a reduction of 14%. One of the main reasons for the superior performance of combined NBS is that they work in parallel, each treating a different portion of run-off generated from the sub-catchment (Pappalardo et al., 2017). For these combinations, the spatial distribution should be carefully considered because it can improve the runoff regime better when compared to centralised NBS (Loperfido et al., 2014).

Further research on the use of combined NBS and grey infrastructure (i.e., hybrid measures) is desirable as only three contributions were found in the review. Alves et al., (2016) presented a novel method to select, evaluate and place different hybrid measures for retrofitting urban drainage systems. However, only fundamental aspects were touched upon in the methodology and they suggested future work should include the possibility of considering stakeholders’ preferences or flexibility within the method. In the work of Vojinovic et al. (2017), a methodological framework that combines ecosystem services (flood protection, education, art/culture, recreation and tourism) with economic analysis for the selection of multifunctional measures and consideration of small and large scale NBS has been discussed for the case of Ayutthaya in Thailand. Onuma and Tsuge, (2018) compared the cost-benefits and performance of NBS and grey infrastructures, concluding that NBS are likely to be more effective when implemented through cooperation with local people, whereas hybrid solutions are more effective than a single NBS in terms of performance.

The first limitation of the above studies is that they only assess the effectiveness of NBS at urban scales. This may not be sufficient for large events, as climate change is likely to increase the frequency and intensity of future events (Qin et al. 2013). A large scale NBS could be a solution for storm events with large magnitude and long duration, which is usually the case for disaster risk reduction applications, and therefore research in this direction is highly desirable (Giacomoni et al. 2012). Although Fu et al., (2018) analysed variations in runoff for different scales and land-uses, the impact of NBS was only examined for the small urban scale. Another limitation is that none of these contributions incorporated cost-benefit analyses (CBA). CBA can be used as a tool to support the decision-making process as they serve the feasibility of implementation costs and the potential benefits of NBS.

4.1.2 Research on large-scale NBS for hydro-meteorological risk reduction

Large-scale water balance, water fluxes, water management and ecosystem services are affected by future changes such as climate change, land use changes, water use changes and population growth. To address such challenges, large scale NBS are needed to make more space for water to retain, decelerate, infiltrate, bypass, and discharge (Cheng et al., 2017; Thorslund et
al., 2017). Generally, a large-scale NBS combines different NBS within a larger system to achieve better long-term strategies. There are some examples of NBS measures for hydro-meteorological risk reduction summarized in McVittie et al., (2018) and Sahani et al., (2019). A summary of effectiveness, co-benefits and cost of large scale NBS measures is shown in Table 4.

Only few articles have addressed the combined behaviour of NBS at large scales. One of the possible reasons is that large-scale systems are more complex than small-scale systems. The most common large-scale NBS are flood storage basins (De Risi et al., 2018), preservation and regeneration of forests in flood-prone areas (Bhattacharjee and Behera, 2018), making more room for the river (Klijn et al., 2013), river restoration (Chou, 2016), wetlands (Thorslund et al., 2017), and mountain forestation (Casteller et al., 2018)

A classic example of a large-scale NBS implementation is the ‘Room for the River Programme’ implemented along the Rhine and Meuse rivers in the Netherlands. The Room for the River Programme consisted of 39 local projects based on nine different types of measures (Klijn et al., 2013). These measures are flood plain lowering, dike relocation, groyne lowering, summer bed deepening, water storage, bypass/floodway, high water channels, obstacle removal and dike strengthening. The benefits that the programme achieved are more than just reducing flooding, also increasing opportunities for recreation, habitat and biodiversity in the area (Klijn et al., 2013). Another case study of a large scale NBS is the Laojie river project in Taoyuan City in Taiwan. The study focused on changing the channelised, culverted, flood-control watercourse into an accessible green infrastructure corridor for the public (Chou, 2016). The landscape changes resulting from this project have increased recreation activities and improved the aesthetic value in the area.

NBS may benefit people in coastal areas by reducing risk from storm surges, wave energy, coastal flooding as well as erosion as documented by several authors (see, for example, Coppenolle, 2018; Joyce et al., 2017; Ruckelshaus et al., 2016; Sutton-Grier et al., 2018). NBS for coastal areas can be implemented either at large or small scales. They include dunes, beaches, oyster and coral reefs, mangroves, seagrass beds and marshes. These measures can also provide habitat for different species such as fish, birds, and other wildlife (Ruckelshaus et al., 2016). Schoonees et al., (2019) provided lists of general recommendations, technical guidelines and policies, and design considerations for NBS in coastal areas. However, only a few articles of the 146439 reviewed focused on the potential benefits of NBS in coastal areas.

Casteller et al. (2018) concluded that native mountain forests could be used to reduce hydro-meteorological risk such as flash floods and landslides. Moreover, the use of NBS in different forest ecosystems to reduce shallow landslide impacts should be addressed (de Jesús Arce-Mojica et al., 2019). To reduce the impact of large-scale hydro-meteorological events, more research is needed on large-scale NBS and their hybrid combinations designed to attenuate flows and improve drainage. They should be implemented to include improvements in solid waste management, community-based river cleaning programs and reforestation (De Risi et al., 2018).
4.2 Techniques, methods and tools for planning, selecting, evaluating and implementing NBS

Figure 4 illustrates a typical process for the selection and evaluation of NBS. The process starts by selecting possible measures that correspond to the local characteristics and project’s target. The next step is concerned with evaluating the measures’ performance using numerical models, cost-benefit analysis and/or multi-criteria analysis. For more complex systems with a large number of scenarios and parameters, optimisation can be used to maximise the benefits and minimise the costs. The techniques, methods and tools for planning, selecting, evaluating and implementing NBS are reviewed in the following section.

4.2.1 Selection of NBS

It has been a well-accepted fact that not all NBS are suitable for all conditions. Therefore, it is important to consider the feasibility and constraints at the site at an early stage in the selection process. The first consideration in selecting NBS is to define the objective such as the target area (i.e. urban, rural) and performance requirements such as quantity and/or quality (Romnée and De Herde, 2015; Zhang and Chui, 2018). For example, Pappalardo et al., (2017) chose permeable pavements and green roofs because they can detain runoff or enhance infiltration to the subsoil. Another approach is to consider both primary benefits and key co-benefits. For instance, Majidi et al., (2019) developed a framework to select NBS to reduce flood risk and enhance human thermal comfort (reducing heat stress). Many authors suggest restricting the choice of appropriate NBS based on common site constraints such as land use, soil type, groundwater depth, catchment characteristics, political and financial regulations, amenities, environmental requirements and space available (Eaton, 2018; Joyce et al., 2017; Nordman et al., 2018; Oraei Zare et al., 2012). For example, Eaton (2018) selected bio-retention measures because these are more suitable in low-density residential land use. Moreover, the study of Reynaud et al., (2017) describes how the type of NBS has an impact on individuals’ preference for ecosystem services. Therefore, a screening analysis is necessary to select the NBS measures that are best suited to local constraints and objectives, providing decision-makers with valuable information. The way forward in the selection of NBS is to consider spatial planning principles to locate the position for measures. Spatial planning principles can facilitate and stimulate discussion among local communities, researchers, policy-makers and government authorities.

4.2.2 Frameworks and methods for evaluation of NBS

There are several frameworks and methods that can be used to evaluate the performance indicators of NBS discussed in this review. One of the most popular evaluation approaches is to analyse, simulate and model hydrology, hydraulics and water balance processes. This information is then used to support decision makers, planners and stakeholders in their evaluation of performance and potential of NBS by comparing modelled results against the current situation, baseline scenario or targets (Jia et al., 2015).

In addition to hydrological and hydraulic analyses, cost-benefit analyses are often used to select and evaluate implement a cost-effective NBS (Huang et al., 2018; Nordman et al., 2018; Watson et al., 2016; Webber et al., 2018). The common benefits
considered include prevented damage costs, omitted infrastructures, and prevented agricultural losses. One cost-benefit approach is to evaluate NBS by applying the whole life cycle costing approach (LCC) including construction, operation, maintenance and opportunity costs (Nordman et al., 2018) and Return on Investment (ROI) (De Risi et al., 2018).

Another method for the evaluation of NBS is multi-criteria analysis (MCA), which has the potential to integrate and overcome the differences between social and technical approaches (Loc et al., 2017). It can be used to structure complex issues and help find a better understanding of costs and benefits. Such analysis is useful for decision makers when there are multiple and conflicting criteria to be considered (Alves et al., 2018b; Loos and Rogers, 2016). The MCA takes different criteria into account and assigns weights to each criterion. This process can produce a ranking of the different measures that can be implemented on the site (Chow et al., 2014; Jia et al., 2015). For example, Loc et al. (2017) integrated the results from numerical modelling and social surveys into a MCA and ranked the alternatives based on the evaluation criteria of flood mitigation, pollutant removal and aesthetics. Loos and Rogers (2016) applied multi-attribute utility theory (MAUT) to assess utility values for each alternative by assuming that preference and utility are independent from each other. Petit-Boix et al. (2017) recommended that future research should combine the economic value of the predicted material and ecological damage, risk assessment models and environmental impacts of NBS.

Since not all assessments can be done with modelling alone, interviews and fieldwork are often necessary. For instance, Chou (2016) used eighteen open questions from six topics, namely: accessibility; activities; public facilities; environmental quality; ecological value; and flood prevention. These questions are used to evaluate the qualitative performance of river restoration. However, some of the methods are only appropriate for small scale applications and cannot be applied in large catchments. Yang et al. (2018) proposed Relative Performance Evaluation (RPE) methods, which use a score to calculate the performance for all alternatives. This score is calculated as the weighted sum of the scores of individual indicators.

From the discussion above, it can be observed that there are still challenges in evaluating intangible benefits of NBS and incorporating stakeholders’ preferences into the process. For complex systems with a large number of scenarios and parameters, simple trial-and-error methods may not be the feasible approach. In such cases, an automated optimisation method could be effectively applied to handle these tasks and to combine the above mentioned methods. There is also a challenge in combining a range of aspects that can and cannot be expressed in monetary terms into the same framework of analysis.

4.2.3 Optimal configuration of NBS

In order to implement NBS, typical selection factors include the number of NBS measures, size, location, and potential combinations of NBS. Optimisation of NBS strategies has been increasingly used in the context of urban stormwater management. Most of the studies focus on minimising water quantity and improving water quality by selecting the type, design, size and location of NBS (Behroozi et al., 2018; Gao et al., 2015; Giacomoni and Joseph, 2017; Zhang and Chui, 2018). Zhang
and Chui (2018) systematically reviewed optimisation models that have different structures, objectives and allocation components. This section reviews some examples of using optimisation to assess NBS.

A comprehensive modelling system typically refers to an optimisation package tool that integrates an “easy-to-use” user interface with physically based deterministic models. Examples include SUSTAIN (the System for Urban Stormwater Treatment and Analysis IntegratioN) (Zhang and Chui, 2018) and Best Management Practice Decision Support (BMPDSS) (Gao et al., 2015). The SUSTAIN model was developed by the United States Environmental Protection Agency (US EPA) and aims to provide decision makers with support in the process of selection and placement of NBS measures, and to optimise the hydrological performance and cost-effectiveness of NBS in the urban watershed (Leslie et al., 2009; Li et al., 2018a). There are several studies that apply SUSTAIN with the aim to minimise the cost of NBS for both runoff quantity (flow volume, peak flow) and runoff quality (pollutant removal) (Gao et al., 2015; Li et al., 2018c). It is, however, important to note that comprehensive modelling systems are not always easily modified to fit with the specific needs of users.

Another optimisation tool approach is integrated model-algorithm tools, which combine numerical (hydrological-hydrodynamic) models with optimisation algorithms. A popular optimisation method used to evaluate NBS performance is a multialgorithm, genetically adaptive multiobjective (AMALGAM) method using the multilevel spatial optimisation (MLSOP) framework (Liu et al., 2016).

In the reviewed articles, Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used in most of the studies to date. Wang et al., (2015) concluded that NSGA-II is one of the most popular multiobjective evolutionary algorithms (MOEAs) despite limited parameter tuning features, and generally outperformed the other MOEAs in relation to the set of solutions generated. There are several examples of the use of NSGA-II. Oraei Zare et al. (2012) minimised run-off quantity while maximizing the improvement of water quality and maximising reliability. Karamouz and Nazif (2013) minimised cost of flood damage as well as minimising NBS cost in order to improve system performance in dealing with the emerging future conditions under climate change. Yazdi and Salehi Neyshabouri (2014) optimised cost-effectiveness, which focused on land use change strategies including orchard, brush and seeding measures in different parts of the watershed. All of the above mentioned studies coupled NSGA-II with the Storm Water Management Model (SWMM) developed by US EPA (Cipolla et al., 2016; Li et al., 2018b; Mei et al., 2018; Tao et al., 2017; Wu et al., 2018; Yang et al., 2018; Zhu and Chen, 2017) to address the optimisation problems.

There are two different optimisation methods of Particle Swarm Optimization (PSO) which have been found in the course of this review. The modified Particle Swarm Optimization (MPSO) is used by Duan et al. (2016) to solve the Multi-Objective Optimal (MOO) of the cost-effectiveness of NBS based detention tank design. Similarly, Behroozi et al., (2018) used the multi-objective particle swarm optimisation (MOPSO) by coupling it with SWMM to optimise the peak flow and mean TSS concentration reduction by changing the combinations of NBS.
Another algorithm that is used for optimising the performance of NBS is Simulated Annealing (SA). SA is a general probability optimisation algorithm that applies thermodynamic theories in statistics. An example of a study with SA is given by Huang et al., (2018) who automatically linked SA with SWMM to maximise cost-benefit for flood mitigation and layout design. The cost-benefit analysis is computed using annual cost, which includes both annual fixed cost and annual maintenance cost. Another study that applied SA is Chen et al., (2017) who combined SA with SWMM to locate NBS in Hsinchu County in northern Taiwan by considering three objective functions. These were minimising depths, durations, and the number of inundation points in the watershed.

It can be observed that most of the optimisation models to date (both comprehensive modelling system and model algorithms) are coupled with SWMM for urban storm management. There is still a lack of research that uses optimisation to maximise the efficiency of NBS on a large scale as well as combining other co-benefits in optimisation (Table 3). Furthermore, there is a lack of research that employs two-dimensional models in the optimisation analysis. This is particularly important when considering estimation of flood damages and other flood propagation-related impacts.

4.2.4 Tools for selection, evaluation and operation of NBS

Recently, several selection and evaluation tools have been developed in order to assist stakeholders in screening, selecting and visualising NBS measures. Examples of web-based applications developed to screen urban NBS measures are Green-blue design tool (atelier GROENBLAUW, 2019), PEARL KB (PEARL, 2019), Climate Adaptation App (Bosch Slabbers et al., 2019) and Naturally resilient communities solutions (Naturally Resilient Communities, 2019). These web-based tools allow the user to filter NBS in relation to their problem type, measure, land use, scale, and location.

In addition to the above, there are also tools that combine both the selection and evaluation processes together to use as planning support systems tool. An example is the SUDs selection and location (SUDSLOC) tool, which is a GIS tool linked to an integrated 1D hydraulic sewer model and a 2D surface model. UrbanBEATS (the Urban Biophysical Environments and Technologies Simulator) aims to support the planning and implementation of WSUD infrastructure in urban environments (Kuller et al., 2018). Other tools that can be used to select and evaluate potential NBS interventions are Long-Term Hydrologic Impact Assessment-Low Impact Development (L-THIA-LID) (Ahiablame et al., 2012; Liu et al., 2015) and the GIS-based tool called Adaptation Support Tool (AST) (Voskamp and Van de Ven, 2015). Although these tools could be useful in assisting decision makers, some of them may not be suitable for every location and scale. For example, source data required into L-THIA-LID cover only the United States and QUADEAU (Romnée and De Herde, 2015) is only suitable for urban stormwater management in a public space scale.

In addition to the above, other models such as MIKE packages developed by DHI (Semadeni-Davies et al., 2008), Soil and Water Assessment Tool (SWAT) (Cheng et al., 2017), IHMORS (Herrera et al., 2017), and Urban Water Optioneering Tool (UWOT) (Rozos et al., 2013) can be effectively used in the analysis effectiveness of NBS.
To date, very few tools have been developed to calculate multiple benefits of NBS in monetary terms as well as to address their qualitative benefits. Some examples are Benefits of SUDs Tool (BeST), which provides a structured approach to evaluating potential benefits of NBS (Digman et al., 2017; Donnell et al., 2018; Fenner, 2017), and the MUSIC tool (Model for Urban Stormwater Improvement Conceptualization), which is a conceptual planning and design tool that also contains a life cycle costing module for different NBS that are implemented in Australia (Khastragir and Jayasuriya, 2010; Schubert et al., 2017).

There are also other tools that can be used for modelling stormwater management options and/or to assess economic aspects of NBS in urban areas. These are documented in the work of Jayasooriya and Ng (2014). However, most of these tools only focus on small-scale NBS such as bio-retentions, pervious pavements, green roofs, swales, retention ponds, biofiltration and rainwater harvesting. There are only a few tools that can address river and coastal flood protection measures and droughts, while none of the tools can be used to reduce the risk from landslides and storm surges. A lack of information systems, information clusters and platforms for information exchange between authorities and practitioners has been recognized by Kabisch et al. (2016).

There is also the need to explore the use of sensors, regulators, telemetry and Supervisory Control and Data Acquisition (SCADA) systems for efficient and effective operation and real-time control of NBS. Such configurations, which are based on the use of real-time control technology for operation of NBS, can be referred to as “SMART NBS”. The value of exploring SMART NBS configurations may be particularly beneficial for hybrid systems, where NBS sites need to be configured to work closely with different kinds of measures.

4.5 Socio-economic influence on implementation of NBS

Investing in NBS for hydro-meteorological risk reduction is essential to ensure the capability for future socio-economic development (Faivre et al., 2018). In this respect, the European Commission has been investing considerably in the research and innovation of NBS or EbA, and some recent efforts have been placed on practical demonstration of NBS for climate change adaptation and risk prevention (Faivre et al., 2017).

The European Commission is dedicated to bring innovative ‘sciences-policy-society’ mechanisms, open consultations, and knowledge-exchange platforms to engage society in improving the condition for implementation of NBS (Faivre et al., 2017). There are some inventories of web-portals, networks and initiatives that address NBS at European, national and sub-national levels (Table 6).

Denjean et al. (2017) noted that the people who propose NBS are in many cases ecologists and biologists who have been trained within a very different scientific paradigm and thus speak a ‘different language’ to the key decision makers, who are often civil and financial engineers, contractors and financing officers. Hence, this may limit the feasibility of implementation of NBS.
Very few articles study actions or processes in relation to stakeholder participation. However, those that do so stress the importance of involving stakeholders in the evaluation and implementation of NBS and the current practical limitations of implementing NBS. One of the important reasons is to ensure that stakeholders and local government are fully aware of the multiple benefits of NBS so that they can integrate them better into planning for sustainable cities (Ishimatsu et al., 2017). For example, Liu and Jensen, (2018) and Chou, (2016) claim that the implementation of NBS with visible benefits on the landscape and the liveability of the city (in terms of amenities, recreation, green growth, and microclimate) can create positive attitudes among stakeholders towards applying NBS. Moreover, as the implementation of NBS is often a costly investment for local communities, and the facilities are expected to be in place for a decade, it is essential for stakeholders to know the effectiveness of NBS (Semadeni-Davies et al., 2008). Involving the community with authorities in both the planning and implementing process can be a very useful strategy (Dalimunthe, 2018). In a case study of the Great Plains in the US, Vogel et al., (2015) addressed how local perceptions of NBS effectiveness and applicability limit its adoption. One of the factors was a lack of awareness of NBS and support from stakeholders and authorities. Another case in Portland, Oregon, USA, Thorne et al., (2018) concluded that the limited adoption of NBS is caused by the lack of confidence in public preferences and socio-political structures, as well as the uncertainty regarding scientific evidence related to physical processes. To solve this, they suggested that both socio-political and biophysical uncertainties must be identified and managed within the framework for designing and delivering sustainable urban flood risk management.

Schifman et al., (2017) proposed a Framework for Adaptive Socio-Hydrology (FrASH) that can be used in NBS planning and implementation by bringing ideas together from socio-hydrology, the capacity for adaptation, participation and inclusiveness, and organised action. The framework also helps in creating a connected network between municipalities, public works departments, organisations and people in the community. This potentially allows for the management of resilience in the system at multiple scales.

Often, it is not as easy to address socio-economic issues as technical questions. These socio-economic issues include perception and acceptance, policies, interdisciplinary nature, education, and documenting the economic benefit of NBS implementation (Alves et al., 2018a; Santoro et al., 2019; Vogel et al., 2015). Nevertheless, social science research (i.e. surveys, interviews, and focus groups) helps to review and gain insights about the obstacles and motivations for implementing NBS, as well as to understand a community’s resilience and stakeholders’ risk perception (Matthews et al., 2015; Santoro et al., 2019). For instance, bringing the findings to stakeholders and community members to discuss what level of flood hazards is acceptable and what level of climate change adaptation capacity the community plans to achieve (Brown et al., 2012). Moreover, socio-political dynamics in NBS is still lacking, there are few case studies available that critically evaluate the politics of NBS in the role of community mobilization (Triyanti and Chu, 2018).

Not only it is essential to involve stakeholders in the selection, planning, design and implementation of NBS, but it is also important for bridging gaps between researchers, engineers, politicians, managers and stakeholders. This may help to improve
our capacity for using both small and large scale NBS. There are well documentations of policy arrangements, scientific niches and current status of governance studies of NBS that were reviewed by Scarano (2017); Triyanti and Chu 2018).

4.6 Multiple-benefits of NBS

The literature on NBS and its sister concepts increasingly refers to multiple benefits on social, economic and environmental enhancements. The reason for that is that NBS are regarded as sustainable solutions that use ecosystem services to provide multiple benefits for human well-being and the environment, which differs from grey infrastructure. Moreover, these multiple benefits of NBS can help to achieve many of the 2030 Agenda for Sustainable Development Goals (SDGs). The recent publication shows how NBS can contribute to achieving the SDGs (Seifollahi-Aghmiuni et al., 2019). This publication reports that wetland ecosystem services in Sweden positively interact with SDG 1 (no poverty), SDG 2 (zero hunger), SDG 3 (good health and well-being), SDG 6 (clean water and sanitation), SDG 7 (affordable and clean energy), 11 (sustainable cities and communities), SDG 12 (responsible consumption and production), SDG 13 (climate action), SDG 14 (life below water) and SDG 15 (life on land). One of the processes that could provide these benefits is to give more significant consideration to landscape function, adaptive and multi-functionality design (Lennon et al., 2014; Vojinovic et al., 2017), restoring naturally occurring ecosystems and promoting desirable soil (Keesstra et al., 2018).

The literature to date shows that multiple challenges can be continually addressed through NBS. These include reducing flood risk (Song et al., 2018), storing and infiltrating rainfall run-off, delaying and reducing surface runoff, reducing erosion and particulate transport (Loperfido et al., 2014), recharging groundwater discharge, reducing pollution from surface water (Donnell et al., 2018), increasing nutrient retention and removal (Loperfido et al., 2014), maintaining soil moisture, and enhancing vegetation growth. Such benefits help in reaching SDG 6 - ensuring sustainable water management.

Beyond water management, he case for NBS includes their ability to provide additional benefits in improving socio-economic aspects (SDG 11) and human well-being (SDG 3) through recreational areas and aesthetic value (Song et al., 2018), as well as encouraging tourism through the access to nature (Sutton-Grier et al., 2018). Wheeler et al., (2010) quantified the volume and intensity of children’s physical activity in greenspace and found that time in greenspace is more likely to lead to greater activity intensity amongst children. The use of NBS can bring economic benefits (SDG 1 and SDG 8) in different ways, such as reduced/prevented damage costs from hydro-meteorological events, energy savings from the reduction of stormwater that typically needs to be treated in a public sewerage system and carbon savings from reduced building energy consumption (heating and cooling) (Soares et al., 2011). Such energy and carbons savings will help contribute to SDG 13.

The environmental benefits of NBS measures can have various positive impacts. Some of the most important are the ability to enhance environmental and ecosystem services by connecting habitat and biodiversity (Hoang et al., 2018; Reguero et al., 2018; Thorslund et al., 2017), increasing carbon consequences, reducing air and noise pollution (Donnell et al., 2018); and improving urban heat island effect mitigation (Majidi et al., 2019; Raymond et al., 2017). Zhang and Chui, (2019) reviewed
the hydrological and bio-ecological benefits of NBS across spatial scales and suggested that there should be more research at the catchment scale to consider the full benefits of NBS.

The hydrological and water quality benefits of NBS have been widely reviewed and discussed, but there are few articles that focus on evaluating the multi-benefits of NBS. **Doing so could help raise awareness and enhance the institutional and social acceptance of these measures (Pagano et al., 2019).** Hoang et al., (2018) proposed a new integrated methodology using a GIS approach to assess benefits and disadvantages of NBS, which include habitat connectivity, recreational accessibility, traffic movement, noise propagation, carbon sequestration, pollutant trapping and water quality. Donnell et al., (2018) used BEST and the Blue-Green Cities toolbox to assess benefits, and Mills et al., (2016) assessed air pollution reduction based on tree canopy cover. **Alves et al., (2019) presented a novel methodology for valuing co-benefits for NBS applications in urban contexts.** Fenner (2017) recommended that their spatial distribution should be assessed through multi-functional design making it possible to identify how this is valuable to stakeholders and where the overall aggregated benefits occur. However, there is still a need for deeper understanding of assessment of multi-benefits of NBS (Liu et al., 2017). A challenge is the lack of information on the values of ecosystem and multi-related ecosystems economic valuation.

4.7 Trends, knowledge gaps and future research prospects

The literature material reviewed in this study showed that NBS have not been equally applied to all hydro-meteorological risk reduction contexts. The review identified in total 1204 Journal articles from 2007 to the end of 2019. The analysis of publications from 2007 to 2019 shows that only 121 out of 14392 articles (i.e., 11%) explicitly used the term “Nature-Based Solution” for hydro-meteorological risk reduction (Fig. 5). This can be explained due to the term NBS has been used only from 2008 (MacKinnon et al., 2011) while other terms have been used earlier in different countries (Fig.1). However, the significant increase of published articles in recent years shows how NBS is a rapidly growing research area (Fig.5).

146 publications of NBS for hydro-meteorological risk reduction were reviewed. Most of the literature to date is about NBS in urban areas whereas the contexts concerning river and coastal floods, droughts and landslides are the least addressed. 82% of all articles were concerned with runoff reduction or flood risk reduction in urban areas (Fig 6). Even there are two search terms that include “Urban” out of the 10 search terms, it contributed to only 2.7% of the total 82% urban cases. The large scale NBS is only 1643 articles, mostly focus on river and coastal flooding (Table 5)

An overview of quantitative results, some research gaps and future research prospects is given in Table 6. This table indicates subjects or areas in which knowledge is missing or insufficient. The knowledge gaps have been divided to 8 subjects, which are: the effectiveness of small scale NBS, the effectiveness of large scale NBS, selection and assessment of NBS with focus on risk reduction, multi-benefits of NBS, application of tools, multi-functional design, stakeholders participation, and financial governance and policy. Some of the key challenges concluding remarks are summarised below.
There is a clear gap between the amount of research on small scale NBS in urban areas and large scale NBS at the catchment (river basin), rural, and regional scale. The reason for this is that a large-scale system is more complex than a small system. Therefore, research and frameworks that deal with the problem of reducing hydro-meteorological risk with upsizing NBS from urban scale to catchment (river basin) scale would be beneficial, and it would be also beneficial to understand both the natural processes of large scale NBS and how they change over time. Furthermore, there are only a few studies that combine NBS at both small- and large-scale, and further research in this direction is highly desirable.

Obviously, there is no single NBS solution that can solve all problems. Every project needs to be designed to address a particular challenge in its local contexts and in its respective community. Therefore, an understanding of site conditions is necessary for NBS to achieve the target of the project.

Based on the findings of the literature review, there are still challenges in relation to methods and tools for planning and implementing NBS. These include improving and developing methods for assessing co-benefits (especially socio and ecological benefits, i.e. aesthetics values, community liveability, and human health), frameworks and methods for evaluating large-scale NBS and “hybrid measures” (i.e. combinations of grey infrastructure and small and large scale NBS).

There are also challenges in incorporating local stakeholder participation within the framework and models and within the assessment and implementation process. Other challenges regarding governance are to develop guidance on effective models of governance, provide insights information on actors, institutions and legal instruments and other requirements that are relevant for implementing NBS. The reason for this is the lack of workable frameworks that can bring together a variety of stakeholder groups. Moreover, there is still a lack of finance studies and guidelines for cost-effective implementation, maintenance and operation of NBS projects, and mechanisms that can be used to promote new business and finance models for successful implementation of NBS.

There should also be more efforts in the development of assessment tools that incorporate new technologies such as real-time control systems, forecast models, and coupled models to provide more active and integrated operational solutions (i.e., SMART NBS). There is a need for the development of databases that include functions, benefits, and costs of large and small scale NBS to facilitate future research.

5 Conclusions

The present paper provides a critical review of the literature and identifies future research prospects based on the current knowledge gaps in the area of Nature-Based Solutions for hydro-meteorological risk reduction by using a systematic review. The systematic review method helps to limit the scope of the work and also provides useful direction for defining research gaps, as articles can be collected from a board range of sources. However, there are some disadvantages of systematic reviews. For example, a finite selection of keywords will introduce gaps into the list of articles to be reviewed. Also, important grey
literature (e.g., reports and books) could be overlooked. Finally, poorly written abstracts may cause an article to be excluded from the review.

The review process started by analysing 16084 articles sourced from Scopus and 14314232 articles form Web of Science from 1st January 2007 to 19th November 2019. The final full analysis was performed on 146439 articles. The systematic review has shown that considerable achievements have been made to date. However, there are still many challenges and opportunities that will play an important role in extending the knowledge of NBS, and that will play an important role in the coming years. Some examples of research gaps are: combining small scale and large scale NBS; the effectiveness of NBS in reducing risk at the regional and catchments scale; the frameworks, methods, and tools for assessing co-benefits; involvement of local stakeholders in the selection, assessment and implementation process; integration of NBS with new technologies; and development of NBS databases.

The effectiveness, benefits and acceptance of NBS are dependent on the implementation purposes, local context and cultural setting. For example, small scale NBS (e.g., swales, green roofs, or porous pavements) are more suitable for urban flooding while large scale NBS (river restoration, dunes, or wetlands) are more suitable for river floods, coastal floods, droughts and landslides. Small scale NBS are more effective in reducing flood peaks for smaller magnitude frequent storms (e.g., 2-year return period) than larger magnitude infrequent storms (e.g., 10-year return period). Large scale NBS can provide more benefits compared to small scale NBS because they encompass larger spaces, thus more function can be included in the design process. For example, the Laojie river project in Taoyuan City in Taiwan changed the channel into an accessible green corridor. This project helps in reducing flood risk, improving riverside landscapes, increasing recreation area, increasing the aesthetic value in the area, and improving river water quality. On the other hand, small scale NBS need less area because most of the measures can be implemented in the free space. For example, green roofs can be implemented on the roofs of buildings, and permeable pavements can be implemented in car parks. Investments in NBS will benefit society by providing cost-effective measures and adaptive strategies that protect their communities and achieve a range of co-benefits. Moreover, bridging the gaps between researchers, engineers and stakeholders will help to improve the capacity of NBS in reducing hydro-meteorological risk as well as increasing their benefits. Strengthening these aspects may be beneficial for improving acceptance of NBS at the local level.

To fill some of those gaps, Horizon 2020 projects, namely, RECONECT, PHUSICOS and OPERANDUM were initiated in 2018 to help bridge the gaps in the innovation of NBS and to test their efficacy in rural, mountain and transition land environments. Development of techniques, methods and tools for planning, selecting, evaluating and implementing NBS are among the common products of RECONECT, PHUSICOS and OPERANDUM.
6 Acknowledgements

Production of this article received funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No 776866 for the research RECONECT (Regenerating ECOsystems with Nature-based solutions for hydro-meteorological risk rEduCTion) project. It was also supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No 776848 for OPERANDUM and under grant agreement No 776681 for PHUSICOS. The study reflects only the authors’ view and the European Union is not liable for any use that may be made of the information contained herein.

Appendix

Appendix A: Abbreviations

10	AMS	Adaptive metropolis search
	ART	Adaptation Support Tool
	BeST	Benefits of SUDs Tool
	BGI	Blue-Green Infrastructure
	BMPDSS	Best Management Practice Decision Support
15	BMPs	Best Management Practices
	CBA	Cost-benefit analyses
	CBD	Convention on Biological Diversity
	CCA	Climate change adaptation
	CEM	Commission on Ecosystem Management
20	DE	Differential evolution
	DRR	Disaster risk reduction
	EbA	Ecosystem-based Adaptation
	Eco-DRR	Ecosystem-based Disaster Risk Reduction
	EC	European Commission
25	FrASH	Framework for Adaptive Socio-Hydrology
	GI	Green Infrastructure
	IIED	International Institute for Environment and Development
	IUCN	International Union for Conservation of Nature
	LCC	Life cycle costing
30	LID	Low Impact Development
	MAUT	Multiattribute utility theory
Author contributions. LR and ZV designed the objectives of the review. LR selected, read and analysed the articles. LR, ZV, SDS and LSL were involved in the production of the paper. LL and ZV have produced the figures. The other authors have...
contributed to the paper with comments and suggestions. All authors contributed to the writing, editing and revision of the paper.

Competing interests. The authors declare that they have no conflict of interest.

6 Acknowledgements

Acknowledgments. Production of this article received funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No 776866 for the research RECONECT (Regenerating ECOsystems with Nature-based solutions for hydro-meteorological risk rEduCTion) project. It was also supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No 776848 for OPERANDUM and under grant agreement No 776681 for PHUSICOS. The study reflects only the authors’ view and the European Union is not liable for any use that may be made of the information contained herein.

References

CNT: NATIONAL GREEN VALUES™ CALCULATOR METHODOLOGY, edited by (The Center for Neighborhood Technology), 2009.

Cohen-Shacham, E., Walters, G., Janzen, C. and Maginnis, C.: Nature-based solutions to address global societal challenges, IUCN Commission on Ecosystem Management (CEM) and IUCN World Commission on Protected Areas (WCPA), Switzerland., 2016.

Qin, H., Li, Z. and Fu, G.: The effects of low impact development on urban flooding under different rainfall characteristics, J.

Figure 1: Timeline/year of origin of each terminology (Low Impact Developments (LIDs), Best Management Practices (BMPs), Water Sensitive Urban Design (WSUD), Green Infrastructure (GI), Sustainable Urban Drainage Systems (SUDs), Nature-Based Solutions (NBS), Ecosystem-based Adaptation (EbA), Ecosystem-based Disaster Risk Reduction (Eco-DRR) and Blue-Green Infrastructure (BGI)) based on their appearance in publications.
Criteria for the Search Process
1) Articles published in peer-reviewed and scientific journals written in English
2) Articles reported on NBS in terms of hydro-meteorological risk reduction (Table 2)
3) Articles published from 1 January 2007 to 1 December 2018.

Criteria for the selection process
1) To assess the state-of-the-art in research concerning both small and large scale NBS for hydro-meteorological risk reduction.
2) To review the use of techniques, methods and tools for planning, selecting, evaluating and implementing NBS for hydro-meteorological risk reduction.
3) To review the socio-economic influence in the implementation of NBS for hydro-meteorological risk reduction as well as their co-benefits, effectiveness and costs.

Phase 1
- Sourcing articles from Scopus (n=1407)
- Sourcing articles from Web of Science (n=1232)
- Combining articles from both databases (n=2639)
- Identifying and removing duplicated articles (n=1395)

Phase 2
- Screening articles based on titles and keywords (n=1204)
- Evaluating articles based on reading abstracts (n=380)
- Articles which had full review (n=185)
- Articles included in the review (n=137)
- Articles excluded after screening (n=824) Reason: no relevant words of search terms
- Articles excluded after evaluation (n=195) Reason: focus more on other problems than risk
- Articles excluded after full review (n=48) Reason: do not meet the objectives of the review

Identify knowledge gaps and propose future research prospects
Figure 2: Process of article selection with systematic review method on Nature Based Solutions for hydro-meteorological risk reduction. The final number of fully reviewed articles is 1464.37.
Figure 3: Illustration of large and small scale Nature-Based-Solutions (NBS); Large-scale NBS A illustrates NBS in mountainous regions (e.g., afforestation, slope stabilization, etc.), Large-scale NBS B illustrates NBS along river corridors (e.g., widening river, retention basins, etc.) and Large-scale NBS C illustrates NBS in coastal regions (e.g., sand dunes, protection dikes/walls, etc.); Typical examples of Small-scale NBS are green roofs, green walls, rain gardens, permeable pavements, swales, bio-retention, etc.

Figure 4: Evaluation process of Nature-Based Solutions. The process includes selecting possible measures and evaluating and optimising measures’ performance using available tools.

Figure 5: An overview of published articles on: (a) Number/trend of published articles on Nature-Based Solutions (NBS) for hydro-meteorological risk reduction and its sister terms: Low Impact Developments (LIDs), Best Management Practices (BMPs), Water Sensitive Urban Design (WSUD), Green Infrastructure (GI), Sustainable Urban Drainage Systems (SuDS), Nature-Based Solutions
Figure 5: Number/trend of published articles on Nature-Based Solutions (NBS) for hydro-meteorological risk reduction and its sister terms: Low Impact Developments (LIDs), Best Management Practices (BMPs), Water Sensitive Urban Design (WSUD), Green Infrastructure (GI), Sustainable Urban Drainage Systems (SuDS), Nature-Based Solutions (NBS), Ecosystem-based Adaptation (EbA), Ecosystem-based Disaster Risk Reduction (Eco-DRR) and Blue-Green Infrastructure (BGI). Nature-Based Solutions (NBS) for hydro-meteorological risk reduction and (b) percentage of published articles that have been studied for reducing urban flooding, coastal flooding, river flooding, droughts

- **Urban Flooding**: 82%
- **Coastal flooding**: 7%
- **River flooding**: 6%
- **Droughts**: 3%
- **Landslides**: 2%
Figure 6: Percentage of published articles that have been studied on Nature-Based Solutions (NBS) for different types of hydro-meteorological risks.

Table 1: Glossary of terminologies and their geographical usage

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Definition/Objectives/Purpose</th>
<th>Commonly used in</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Impact Development (LIDs)</td>
<td>“LID is used as a retro-fit designed to reduce the stress on urban stormwater infrastructure and/or create the resiliency to adapt to climate changes, LID relies heavily on infiltration and evapotranspiration and attempts to incorporate natural features into design.”</td>
<td>- United States</td>
<td>(Barlow et al., 1977; Eckart et al., 2017)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- New Zealand</td>
<td>(Eckart et al., 2017)</td>
</tr>
<tr>
<td>Best management practices (BMPs)</td>
<td>“A device, practice or method for removing, reducing, retarding or preventing targeted stormwater runoff constituents, pollutants and contaminants from reaching receiving waters”</td>
<td>- United States</td>
<td>(Biggers et al., 1980; Moura et al., 2016; Strecker et al., 2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Canada</td>
<td>(Strecker et al., 2001)</td>
</tr>
<tr>
<td>Water Sensitive Urban Design (WSUD)</td>
<td>“Manage the water balance, maintain and where possible enhance water quality, encourage water conservation and maintain water-related environmental and recreational opportunities”</td>
<td>- Australia</td>
<td>(Lottering et al., 2015; Whelans consultants et al., 1994)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Whelans consultants et al., 1994)</td>
</tr>
<tr>
<td>Sustainable Urban Drainage Systems (SUDs)</td>
<td>“Replicate the natural drainage processes of an area – typically through the use of vegetation-based interventions such as swales, water gardens and green roofs, which increase localised infiltration, attenuation and/or detention of stormwater”</td>
<td>- United Kingdom</td>
<td>(Abbott and Comino-Mateos, 2001; Ossa-Moreno et al., 2017)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Ossa-Moreno et al., 2017)</td>
</tr>
<tr>
<td>Green Infrastructure (GI)</td>
<td>“The network of natural and semi-natural areas, features and green spaces in rural and urban, and terrestrial, freshwater, coastal and marine areas, which together enhance ecosystem health and resilience, contribute to biodiversity conservation and benefit human populations through the maintenance and enhancement of ecosystem services”</td>
<td>- United States</td>
<td>(Gill et al., 2007; Lafortezza et al., 2013; Naumann et al., 2011; Walmsley, 1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- United Kingdom</td>
<td>(Naumann et al., 2011)</td>
</tr>
<tr>
<td>Ecosystem-based Adaptation (EbA)</td>
<td>“The use of biodiversity and ecosystem services as part of an overall adaptation strategy to help people to adapt to the adverse effects of climate change.”</td>
<td>- Canada</td>
<td>(CBD, 2009; McVittie et al., 2018; Searano, 2017)</td>
</tr>
<tr>
<td>Ecosystem-based disaster risk reduction (Eco-DRR)</td>
<td>“The sustainable management, conservation, and restoration of ecosystems to reduce disaster risk, with the aim of achieving sustainable and resilient development”</td>
<td>- Europe</td>
<td>(Estrella and Saalismaa, 2013; PEDRR, 2010; Renaud et al., 2016)</td>
</tr>
</tbody>
</table>
Terminology | Definition/Objectives/Purpose | Commonly used in | Reference |
---|---|---|---|
Blue-Green Infrastructure (BGI) | “BGI provides a range of services that include: water supply, climate regulation, pollution control and hazard regulation (blue services/goods), crops, food and timber, wild species diversity, detoxification, cultural services (physical health, aesthetics, spiritual), plus abilities to adapt to and mitigate climate change” | - United Kingdom | (Estrella and Saalisman, 2013) |
Nature-Based Solution | “NBS aim to help societies address a variety of environmental, social and economic challenges in sustainable ways. They are actions inspired by, supported by or copied from nature; both using and enhancing existing solutions to challenges, as well as exploring more novel solutions.” | - Europe | (Cohen-Shacham et al., 2016; European Commission (EC), 2015; Faivre et al., 2017; MacKinnon et al., 2008; Stürck et al., 2015) |

Table 2: Selected concepts and terms used to search relevant literature on NBS for hydro-meteorological risk reduction

<table>
<thead>
<tr>
<th>No</th>
<th>First concept (Nature-Based Solutions)</th>
<th>Connection</th>
<th>Second concept (Hydro-meteorological risk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Nature-based solutions” OR</td>
<td>AND</td>
<td>“Flood”</td>
</tr>
<tr>
<td>2</td>
<td>“Nature-Based Solutions” OR</td>
<td>AND</td>
<td>“Drought”</td>
</tr>
<tr>
<td>3</td>
<td>“Low impact development” OR</td>
<td>AND</td>
<td>“Storm surge”</td>
</tr>
<tr>
<td>4</td>
<td>“Sustainable Urban Drainage Systems” OR</td>
<td>AND</td>
<td>“Landslide”</td>
</tr>
<tr>
<td>5</td>
<td>“Water Sensitive Urban Design” OR</td>
<td>AND</td>
<td>“Hydro-meteorological”</td>
</tr>
<tr>
<td>6</td>
<td>“Best Management Practices” OR</td>
<td>AND</td>
<td>“Disaster”</td>
</tr>
<tr>
<td>7</td>
<td>“Green infrastructure” OR</td>
<td>AND</td>
<td>“Review”</td>
</tr>
<tr>
<td>8</td>
<td>“Green blue infrastructure” OR</td>
<td>AND</td>
<td>“Hydrology”</td>
</tr>
<tr>
<td>9</td>
<td>“Ecosystem-based Adaptation” OR</td>
<td>AND</td>
<td>“Coastal”</td>
</tr>
<tr>
<td>10</td>
<td>“Ecosystem-based disaster risk reduction OR</td>
<td>AND</td>
<td>“Risk”</td>
</tr>
<tr>
<td>11</td>
<td>“Green and grey infrastructure”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Summary of runoff volume and peak flow reduction effectiveness, co-benefits and costs of small scale NBS measures

<table>
<thead>
<tr>
<th>Measures</th>
<th>References</th>
<th>Case studies</th>
<th>Area/ volume covered by NBS</th>
<th>Effectiveness</th>
<th>Co-benefits</th>
<th>Cost/ m²*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous pavement</td>
<td>Shafique et al., (2018)</td>
<td>Seoul, Korea</td>
<td>1050 m²</td>
<td>~30–65%</td>
<td>-</td>
<td>~$252</td>
</tr>
<tr>
<td>Measures</td>
<td>References</td>
<td>Case studies</td>
<td>Area/volume covered by NBS</td>
<td>Effectiveness Runoff volume reduction</td>
<td>Peak flow reduction</td>
<td>Co-benefits</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>---------------------------------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Damodaram et al., 2010 | Texas, USA | 2.99 km² | - | ~10% - 30% | | • Removing diffuse pollution
 • Enhancing recharge to groundwater | | • More effective in heavier and shorter rainfall events. |
| Green roofs | (Burszta-Adamiak and Mrowiec, 2013) | Wrocław, Poland | 2.88 m² | - | ~54% - 96% | • Reducing nutrient loadings.
 • Saving energy
 • Reducing air pollution
 • Increasing amenity value | ~$564 | • More efficient in smaller storm events than larger storm events |
| | (Ercolani et al., 2018) | Milan, Italy | 0.39 km² | ~15% - 70% | ~10-80% | | | |
| | (Carpenter and Kaluvakolanu, 2011) | Michigan, USA | 325.2 m² | ~68.25% | ~88.86% | | | |
| Rain gardens | (Ishimatsu et al., 2017) | Japan | 1.862 m² | ~36-100% | - | • Providing a scenic amenity.
 • Increasing the median property value
 • Increasing biodiversity | ~$501 | • More effective in dealing with small discharges of rainwater |
| | (Goncalves et al., 2018) | Joinville, Brazil | 34,139 m² | 50% | ~48.5% | | | |
| Vegetated swales | (Luan et al., 2017) | Beijing, China | 157 m³ | ~0.3 – 3.0% | ~2.2% | • Reducing concentrations of pollutants
 • Increasing biodiversity | ~$371 | • More effective in heavier and shorter rainfall events.
 • Not suitable in mountains areas |
| | (Huang et al., 2014) | Haihe River basin, China | 1,500 m³ | 9.60% | ~23.56% | | | |
| Rainwater harvesting | (Khastagir and Jayasuriya, 2010) | Melbourne, Australia | 1 m³ - 5 m³ | ~57.8% - 78.7% | - | • Improving water quality (TN was reduced around 72% - 80%) | ~$865/m³ | |
| | (Damodaram et al., 2010) | Texas, USA | 1.5 km² | - | ~8% - 10% | | | |
| Dry detention pond | (Liew et al., 2012) | Selangor, Malaysia | 65,000 m² | - | ~33-46% | • Providing recreational benefits. | | • Delaying the time to peak by 40-45 min |
| Detention pond | (Damodaram et al., 2010) | Texas, USA | 73,372 m³ | - | ~20% | • Providing biodiversity benefits
 • Providing recreational benefits | ~$60 | |
| | (Goncalves et al., 2018) | Joinville, Brazil | 9,700 m³ | 55.7% | ~43.3% | | | |
| Bio-retention | (Luan et al., 2017) | Beijing, China | 945.93 m³ | ~10.2 – 12.1% | - | • Reducing TSS pollution
 • Reducing TP pollution
 • Reducing air pollution
 • Increasing amenity value | ~$534 | • Measure has a better reduction effectiveness in various rainfall intensities |
| | (Huang et al., 2014) | Haihe River basin, China | 1,708.6 m³ | 9.10% | ~41.65% | | | |
| | Khan et al., 2013; | | 48 m³ | ~90% | - | | | |
| Infiltration trench | (Huang et al., 2014) | Haihe River, China | 3,576 m³ | 30.80% | ~19.44% | • Reducing water pollutant
 • Improving surface water quality. | ~$74 | |
<table>
<thead>
<tr>
<th>Measures</th>
<th>References</th>
<th>Case studies</th>
<th>Area/ volume covered by NBS</th>
<th>Effectiveness</th>
<th>Co-benefits</th>
<th>Cost/ m²*</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Runoff volume reduction</td>
<td>Peak flow reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green roof and Porous pavement</td>
<td>(Damodaram et al., 2010)</td>
<td>Texas, USA</td>
<td>4.49 km²</td>
<td>~10% - 35%</td>
<td>Saving energy, Increasing amenity value</td>
<td></td>
<td>More effective in smaller events</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~5% - 32%</td>
<td>Decreasing TSS pollution 50-60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Behroozi et al., 2018)</td>
<td>Tehran, Iran</td>
<td>-</td>
<td>~10% - 21%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~20% - 40%</td>
<td>Removing diffuse pollution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Damodaram et al., 2010)</td>
<td>Texas, USA</td>
<td>4.49 km²</td>
<td>~20% - 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainwater harvesting and Porous pavement</td>
<td>(Damodaram et al., 2010)</td>
<td>Texas, USA</td>
<td>4.49 km²</td>
<td>~20% - 40%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~10% - 21%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detention pond and Raingarden</td>
<td>(Goncalves et al., 2018)</td>
<td>Joinville, Brazil</td>
<td>18,327 m²</td>
<td>70.8%</td>
<td>Providing a scenic amenity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~60.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detention pond and Infiltration trench</td>
<td>(Goncalves et al., 2018)</td>
<td>Joinville, Brazil</td>
<td>18,327 m²</td>
<td>75.1%</td>
<td>Improving surface water quality.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~67.8%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remark: Cost of each measure is based on (CNT, 2009; Nordman et al., 2018; De Risi et al., 2018)
Table 4: Summary of effectiveness, co-benefits and costs of large scale NBS measures

<table>
<thead>
<tr>
<th>Measures</th>
<th>References</th>
<th>Case studies</th>
<th>Area/ volume covered by NBS</th>
<th>Effectiveness</th>
<th>Co-benefits</th>
<th>Cost /unit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-culverting (river restoration)</td>
<td>(Chou, 2016)</td>
<td>Laojie River, Taiwan</td>
<td>3 km</td>
<td>• It can reduce flood risk up to 100 year return period</td>
<td>• Increasing landscape value</td>
<td>~€16.9 billion</td>
</tr>
<tr>
<td>Floodplain lowering</td>
<td>(Klijn et al., 2013)</td>
<td>Deventer Netherlands</td>
<td>5.01 km²</td>
<td>• It can reduce water level 19 cm</td>
<td>• Increasing nature area</td>
<td>~€136.7 million</td>
</tr>
<tr>
<td>Dike relocation/floodplain lowering</td>
<td>(Klijn et al., 2013)</td>
<td>Nijmegen/Lent, Netherlands</td>
<td>2.42 km²</td>
<td>• It can reduce water level 34 cm</td>
<td>• Increasing floodplain area</td>
<td>~€342.60 million</td>
</tr>
<tr>
<td>Floodwater storage</td>
<td>(Klijn et al., 2013)</td>
<td>Volkenrak-Zoommeer</td>
<td>200 million m³</td>
<td>• It can reduce water level 50 cm</td>
<td>• Increasing habitat and biodiversity in the area</td>
<td>~€386.20 million</td>
</tr>
<tr>
<td>Green floodway</td>
<td>(Klijn et al., 2013)</td>
<td>Veessen-Wapenveld</td>
<td>14.10 km²</td>
<td>• It can reduce water level 71 cm</td>
<td>• Increasing floodplain area</td>
<td></td>
</tr>
<tr>
<td>Wetlands (Mangroves and salt Marshes)</td>
<td>(Coppenolle, 2018; Gedan et al., 2011)</td>
<td></td>
<td></td>
<td>• It can mitigate storm surge 80%</td>
<td>• Providing shoreline protection services</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Overview of knowledge gaps and potential future research prospects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Number of publications</th>
<th>Knowledge Gaps</th>
<th>Future research prospects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The effectiveness of small scale NBS</td>
<td>413⁹</td>
<td>- Combination of small and large scale NBS with grey infrastructure.</td>
<td>• Development of a framework and methods to upscale NBS from small to large scale.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Development of a framework, methods and tools to select, evaluate, and design hybrid measures for hydro-meteorological risk reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- NBS for droughts, landslides and storm surges.</td>
<td>• Application of NBS to reduce the risk of droughts, landslides and storm surges.</td>
</tr>
<tr>
<td>2. The effectiveness of large scale NBS</td>
<td>102</td>
<td>- Application to hydro-meteorological risk reduction; - Combination of large scale NBS with grey measures</td>
<td>• Development of a framework, methods and tools to select, evaluate, and design large scale NBS individually and in hybrid combinations for hydro-meteorological risk reduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Development of typologies and guidelines for NBS design, implementation, operation and maintenance.</td>
</tr>
<tr>
<td>3. Selection and assessment of NBS with the focus on risk reduction</td>
<td>272⁶</td>
<td>Framework for selection of NBS</td>
<td>• Defining the role of ecosystems in terms of risk reduction, socio-economic and hydro-geomorphological settings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Combining spatial planning and stakeholders participation in the co-selection process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Framework for cost analysis</td>
<td>• Combining economic value of ecological damage and environmental impact, including the “invisible” ecosystem services (see also Estrella et al., 2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Application of the whole life cycle costing and return on investment within the cost-benefit analysis of NBS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Comparing costs and benefits between NBS, GI and hybrid measures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Defining opportunity costs and trade-offs of NBS implementation</td>
</tr>
<tr>
<td>Subject</td>
<td>Number of publications</td>
<td>Knowledge Gaps</td>
<td>Future research prospects</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Framework for optimal configuration of NBS | | • Use of optimisation techniques to maximise the main benefit and co-benefits of NBS while minimising their costs.
• Use of optimisation techniques to maximise the efficiency of NBS and to define their best configurations within hybrid solutions.
• Assessing the effectiveness of solutions on short and long terms | |
| Combination between multi-criteria and qualitative research | | • Use of multi-criteria and qualitative research in evaluation of NBS.
• How to combine quantitative and qualitative data and research methods.
• Application of qualitative research methods and interviews to effectiveness of NBS | |
• Development of a framework, methods and tools to evaluate wide ranging intangible and tangible benefits.
• Gaining deeper understanding of NBS benefits for human well-being |
| Assessment of ecosystem capacity | | • Assessing ecosystem capacity to maintain services over a longer period of time (see Estrella and Saalismaa, 2013)
• Long–term monitoring and evaluation of ecosystem performance and function before and after the disaster
• Addressing the complexity of coupled social and ecological systems |
| 5. Application of tools | 18 | Application of new technologies and concepts (e.g., high resolutions numerical models, complex, crowdsourcing tools, real-time control system) | • Integration of real-time monitoring and control technologies for NBS operation.
• A trade-off between high resolution numerical models and accuracy of results.
• Use of novel modelling techniques such as complex adaptive systems models and serious games. |
| Web-based decision support tools/systems | | • Development of databases of small and large scale NBS for hydro-meteorological risk reduction.
• Development of platforms, info-systems and clusters for exchange knowledge (see also Kabisch et al., 2016).
• Development of tools to support decision makers in selecting and evaluating hybrid measures.
• Development of tools to assess the multiple-benefits for small and large scale NBS and their hybrid combinations. |
| 6. Multifunctional design | 2 | Framework for multifunctional design | • Development of a framework and methods to support multifunctional design.
• Application of novel landscape design techniques.
• Combining the knowledge from landscape architecture and water engineering (Kabisch et al., 2016).
• Development of frameworks for involvement of stakeholders in the selection, evaluation, design, implementation, and monitoring of NBS (i.e., the co-called co-creation process). |
| 7. Stakeholders participation | 98 | Frameworks for effective stakeholder involvement and co-creation | • Information concerning legal instruments and requirements.
• Development of effective governance structures
• Compilation of data and information concerning multiple actors and institutions which are relevant for implementation of NBS
• Understanding water governance structures, drivers, barriers and mechanism for enabling system transformation (see also Albert et al., 2019)
• Development of methods for evaluation of social, political and institutional dimensions of NBS (see also Triyanti and Chu, 2018)
• Development of finance guidance for implementing maintaining and operating NBS projects. |
| 8. Financing, governance and policy | 4 | Desirable governance structures to support effective implementation and operation of NBS at different scales and contexts | |
| Desirable finance models (e.g., public-private) | | • Development of finance guidance for implementing maintaining and operating NBS projects. |
Table 6: An overview of web-portals, networks and initiatives that address Nature-Based Solutions

<table>
<thead>
<tr>
<th>Name</th>
<th>References/Website</th>
<th>Terminology used</th>
<th>Scale level</th>
<th>Funded by</th>
<th>Proposes</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPPLA</td>
<td>(Oppla, 2019)</td>
<td>Nature-Based Solution, Natural capital, Ecosystem services</td>
<td>Europe</td>
<td>FP7 (EC)</td>
<td>A new knowledge marketplace - EU repository of NBS; a place where the latest thinking on ecosystem services, natural capital and nature-based solutions is brought together.</td>
</tr>
<tr>
<td>BiodivERoSA</td>
<td>(Biodivera, 2019)</td>
<td>Ecosystem services</td>
<td>Europe</td>
<td>Horizon 2020 (EC)</td>
<td>A network of funding organizations promoting research on biodiversity and ecosystem services.</td>
</tr>
<tr>
<td>BISE</td>
<td>(BISE, 2019)</td>
<td>Ecosystem services, Green infrastructures</td>
<td>Europe</td>
<td>EC</td>
<td>A single entry point for data and information on biodiversity supporting the implementation of the EU strategy and the Aichi targets in Europe.</td>
</tr>
<tr>
<td>ClimateADAPT</td>
<td>(ClimateADAPT, 2019)</td>
<td>EbA, Nature-Based Solution, GI</td>
<td>Europe</td>
<td>EC, EEA</td>
<td>A platform that supports Europe in adapting to climate change by helping users to access and share data and information relevant for CCIVA.</td>
</tr>
<tr>
<td>Natural Water Retention Measures</td>
<td>(NWRM, 2019)</td>
<td>Natural water retention measures</td>
<td>Europe</td>
<td>EC</td>
<td>A platform that gathers information on NWRM at EU level.</td>
</tr>
<tr>
<td>Disaster Risk Management Knowledge Centre</td>
<td>(DRMKC, 2019)</td>
<td>Eco-DRR</td>
<td>Europe</td>
<td>EC</td>
<td>A platform that provides a networked approach to the science-policy interface in DRM.</td>
</tr>
<tr>
<td>Natural Hazards – Nature Based Solutions</td>
<td>(World Bank et al., 2019)</td>
<td>Nature-Based Solution</td>
<td>Global</td>
<td>The World Bank</td>
<td>A project map that provides a list of nature-based projects that are sortable by implementing organisation, targeted hazard, and type of nature-based solution,</td>
</tr>
<tr>
<td>Name</td>
<td>References/Website</td>
<td>Terminology used</td>
<td>Scale level</td>
<td>Funded by</td>
<td>Proposes</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>weADAPT</td>
<td>(SEI, 2019)</td>
<td>Ecosystem-based Adaptation</td>
<td>Global</td>
<td>Stockholm Environment Institute (SEI)</td>
<td>A collaborative platform on climate adaptation issues, which allows practitioners, researchers and policy-makers to access credible, high-quality information and connect.</td>
</tr>
<tr>
<td>ClimateScan</td>
<td>(ClimateScan, 2019)</td>
<td>Blue-Green Infrastructures</td>
<td>Global</td>
<td>EC</td>
<td>Global online tool which acts as a guide for projects and initiatives on urban resilience, climate proofing and climate adaptation around the world.</td>
</tr>
<tr>
<td>Partnership for Environment and Disaster Risk Reduction (PEDRR)</td>
<td>(PEDRR, 2019)</td>
<td>Ecosystem-based Adaptation</td>
<td>Global</td>
<td></td>
<td>PEDRR aims to promote and scale-up implementation of Eco-DRR and ensure it is mainstreamed in development planning at global, national and local levels, in line with the SFDRR.</td>
</tr>
<tr>
<td>PANORAMA</td>
<td>(PANORAMA, 2019)</td>
<td>Ecosystem-based Adaptation,</td>
<td>Global</td>
<td>IUCN, GIZ, UNDP</td>
<td>It aims to document and promote examples of inspiring solutions across development topics, to enable cross-sectoral learning and upscaling of successes</td>
</tr>
</tbody>
</table>
The ‘correct’ tracked change version of version 3
Nature-Based Solutions for hydro-meteorological risk reduction: A state-of-the-art review of the research area

Laddaporn Ruangpan¹,², Zoran Vojinovic¹,³, Silvana Di Sabatino⁴, Laura Sandra Leo⁴, Vittoria Capobianco⁵, Amy M. P. Oen⁵, Michael McClain¹,², Elena Lopez-Gunn⁶

¹ IHE Delft Institute for Water Education, Delft, the Netherlands
² Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, the Netherlands
³ College for Engineering, Mathematics and Physical Sciences, University of Exeter, UK
⁴ Department of Physics and Astronomy, University of Bologna, Italy
⁵ Norwegian Geotechnical Institute, Norway
⁶ ICATALIS, Spain

Correspondence to: Laddaporn Ruangpan (L.Ruangpan@tudelft.nl)

Abstract. Hydro-meteorological risks due to natural hazards such as severe floods, storm surges, landslides, avalanches, hail, windstorms, droughts, heat waves and droughts are causing impacts on different sectors of society. Forest fires occur almost daily. Such risks are expected to become worse given the projected changes in climate, degradation of ecosystems, population growth and urbanisation. In this respect, Nature-Based Solutions (NBS) have emerged as effective means to respond to such challenges. NBS is a term used for innovative solutions that are based on natural processes and ecosystems to solve different types of societal and environmental challenges. The new concepts such as Ecosystem-based Adaptation, Green Infrastructure and/or Nature-Based Solutions have emerged as effective means to respond to such challenges. The present paper provides a critical review of the literature and identifies current knowledge gaps and future research prospects. There has been an explosion of scientific publications on this topic with a more significant rise taking place from 2007 onwards. Hence, the review process presented in this paper starts by sourcing 1407 articles from Scopus and 1232 articles from Web of Science. The full analysis was performed on 137 articles. The analysis confirmed that numerous advancements in the area of NBS have been achieved to date. Hence, the review process started by sourcing 1381 articles from Scopus which were also cross-referenced with the articles sourced from Web of Science and Google Scholar. The full analysis was performed on 159 closely related articles. The analysis confirmed that numerous advancements have been achieved to date. These solutions have already proven to be valuable in providing sustainable, cost-effective, multi-purpose and flexible means for hydro-meteorological risk reduction. However, there are still many areas where further research and demonstration is needed in order to promote their upscaling and replication and to make them become mainstream solutions.
There is an increasing evidence that climate change and associated hydro-meteorological risk disasters are already causing wide-ranging impacts on different sectors of society. Natural hazards such as severe floods, storm surges, landslides, avalanches, hail, windstorms, droughts, heat waves and forest fires are a few examples of hydro-meteorological hazards that pose a significant risk. Hydro-meteorological risk is the probability of damage due to hydro-meteorological hazards and its interplay with exposure and vulnerability of the affected humans and environments (Merz et al., 2010), have already made unprecedented impacts on the global economy, human well-being, and the environment. Some of the main reasons for this situation are climate change, land use change, water use change and other pressures linked to population growth (Thorslund et al., 2017a) and the situation is likely to become worse given the projected changes in climate (see for example, EEA, 2017). Therefore, climate change adaptation (CCA) and disaster risk reduction (DRR) strategies are needed to mitigate risks of the extreme events and to increase resilience to disasters, particularly among vulnerable populations. (Maragno et al., 2018; McVittie et al., 2018) effective adaptation strategies are needed to mitigate risks related to the increased frequency of extreme events (Maragno et al., 2018).

Since biodiversity and ecosystem services can play important role in responding to climate-related challenges, both mitigation and adaptation strategies should take into consideration a variety of Green Infrastructure (GI) and Ecosystem-based Adaptation (EbA) measures as effective means to respond to present and future disaster risk (see also EEA, 2015). Such approaches are already well accepted within multilateral frameworks such as the international United Nations (UN) Framework Convention on Climate Change (UNFCCC), the Convention on Biological Diversity (CBD) and the Sendai Framework for Disaster Risk reduction (SFDRR). As such, they are recognized as effective means for climate change adaptation (CCA) and disaster risk reduction (DRR), and for the implementation of the Sustainable Development Goals (SDGs).

In view of the above, many countries are nowadays developing adaptation and mitigation strategies based on GI and EbA to reduce their vulnerability to hydro-meteorological hazards (Rangarajan et al., 2015). Nature-Based Solutions (NBS) have been introduced relatively recently. The reason behind this is that NBS offer the possibility to work closely with nature to adapt to the future changes, and to reduce the impact of climate change as well as improving human well-being (Cohen-Shacham et al., 2016). NBS have been in the focus for research in several EU Horizon2020 funded projects. The Horizon2020 offers new opportunities in the focus area of ‘Smart and Sustainable Cities with Nature based solutions’ (Faivre et al., 2017). Some of these important projects are: Nature4Cites, Naturvation, NAIAD, BiodiverEsA, Inspiration, URBAN GreenUP, UNaLaB, URBINAT, CLEVER Cities, proGIreg, EdiCINET, RECONECT, OPERANDUM, ThinkNature, EKLIPSE and PHUSICOS (nature4cities, 2019).

NBS are typically implemented through both structural (green-blue infrastructure, e.g. wetlands, green roofs) and non-structural measures (e.g. improving the local knowledge of NBS) (Lottering et al., 2015; Raymond et al., 2017). They are associated with multiple benefits such as improving water quality, increasing the opportunities for recreation, improving
human well-being and health, enhancing vegetation growth and connecting habitat and biodiversity (Donnell et al., 2018; Raymond et al., 2017; Song et al., 2018; Thorslund et al., 2017b).

The number of scientific studies focused on GI, EbA and/or NBS to reduce disaster risk are continuously increasing all over the world. The aim of this article is to provide a state-of-the-art review of publications on hydro-meteorological risk reduction with NBS to indicate some directions for future research based on the current knowledge gaps. The analysis focuses on the following hydro-meteorological hazards: floods, droughts, storm surges, and landslides. The review addresses both small and large scale interventions and explores available techniques, methods and tools for NBS assessment, while also providing a snapshot of the major socio-economic factors at play in the implementation process. The key objectives and methods of this study are discussed in Section 3, while Section 2 provides a brief overview of concepts and definitions related to NBS either in general or specifically linked to hydro-meteorological risk reduction. Results and conclusions are discussed in Sections 4 and 5 respectively, to explore the patterns and trends of current research activities as well as to indicate some directions for future research based on the knowledge gaps. The systematic review process presented in this article concerns only scientific journal articles although there is a considerable body of knowledge available in various project reports and other kind of literature. However, since they do not necessarily follow scientific publication standards most of them were excluded from the scope of the present work. Only in those cases where with a more significant contribution has been achieved (and in the absence of scientific articles) such literature was included into the analysis. The key objectives of the present review work are as follows:

1. To identify patterns and trends of NBS publications in scientific journals,
2. To assess the state-of-the-art in research concerning both small and large scale NBS,
3. To review the use of techniques, methods and tools for planning, selecting, evaluating and implementing NBS,
4. To review the socio economic influence in the implementation of NBS as well as their main benefits and co-benefits, and
5. To identify knowledge gaps and proposed future research prospects.

Overview of definitions and theoretical backgrounds

There are several terms and concepts which have been used interchangeably in the literature to date. In terms of NBS, the two most prominent definitions are from International Union for Conservation of Nature (IUCN) and the European Commission. The European Commission defines Nature-Based Solutions as “Solutions that aim to help societies address a variety of environmental, social and economic challenges in sustainable ways. They are actions inspired by, supported by or copied from nature; both using and enhancing existing solutions to challenges, as well as exploring more novel solutions. Nature-based
solutions use the features and complex system processes of nature, such as its ability to store carbon and regulate water flows, in order to achieve desired outcomes, such as reduced disaster risk and an environment that improves human well-being and socially inclusive green growth” (European Commission, 2015). The IUCN has proposed a definition of NBS as “actions to protect, sustainably manage and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously providing human well-being and biodiversity benefits” (Cohen-Shacham et al., 2016). Eggermont et al. (2015) proposed a typology characterising NBS into three types: i) NBS that address a better use of natural/protected ecosystems (no or minimal intervention), which fits with how IUCN frames NBS; ii) NBS for sustainability and multi-functionality of managed ecosystems and iii) NBSs for the design and the management of new ecosystems, which is more representative of the definition given by the European Commission.

NBS is a collective term for innovative solutions to solve different types of societal and environmental challenges, based on natural processes and ecosystems. Therefore, it is considered as an “umbrella concept” covering a range of different ecosystem-related approaches and linked concepts (Cohen-Shacham et al., 2016; Nesshöver et al., 2017), that provides an integrated way to look at different issues simultaneously.

Due to the diverse policy origins, NBS terminology has evolved in the literature to emphasize different aspects of natural processes or functions. In this regard, nine different terms are commonly used in the scientific literature in the context of hydro-meteorological risk reduction: Low Impact Developments (LIDs), Best Management Practices (BMPs), Water Sensitive Urban Design (WSUD), Sustainable Urban Drainage Systems (SUDs), Green Infrastructure (GI), Blue-Green Infrastructure (BGI), Ecosystem-based Adaptation (EbA) and Ecosystem-based Disaster Risk Reduction (Eco-DRR). The timeline of each term, based on their appearance in literature is shown in Figure 1 and their definitions are given in Table 1.

The common idea behind these terms is the use of landscape for transforming the linear character of conventional stormwater management into a more cyclic approach where drainage, water supply, and ecosystems are treated as part of the same system, mimicking more natural water flows (Liu and Jensen, 2018). The literature to date defines these solutions are more or less equally effective in addressing climate change adaptation and disaster risk reduction. The commonalities between NBS and its sister concepts (i.e., GI, BGI, EbA, Eco-DRR) are that they take participatory, holistic, integrated approaches, using nature to enhance adaptive capacity, reduce hydro-meteorological risk, increase resilience, improve water quality, increase the opportunities for recreation, improve human well-being and health, enhance vegetation growth and connect habitat and biodiversity. More information on the history, scope, application and underlying principle of terms of SUDs, LIDs, BMPs, WSUD and GI can be found in Fletcher et al. (2015) while the relationship between NBS, GI/BGI, and EbA is described in detail by Nesshöver et al. (2017).
Although all terms are based on a common idea, which is embedded in the umbrella concept of NBS, differences in definition reflect their historical perspectives and knowledge base that were relevant at the time of the research (Fletcher et al., 2015). The distinguishing characteristic between NBS and its sister concepts is how they address social, economic and environmental challenges (Faivre et al., 2018). Some terms such as SUDs, LIDs, and WSUD refer to NBS that specifically address stormwater management. They use landscape feature to transform the linear approach of conventional stormwater management into a more cyclic approach where drainage, water supply, and ecosystems are treated as part of the same system, mimicking more natural water flows (Liu and Jensen, 2018). GI/BGI focus more on technology-based infrastructures by applying natural alternatives (Nesshöver et al., 2017) for solving a specific activity (i.e., urban planning or stormwater). EbA looks at long-term changes within the conservation of biodiversity, ecosystem services and climate change, while Eco-DRR is more focused on immediate and medium-term impacts from the risk of weather, climate and non-climate-related hazards. EbA is often seen as a subset of NBS that is explicitly concerned with climate change adaptation through the use of nature (Kabisch et al., 2016). From the above discussion, it can be concluded that EbA, Eco-DRR and GI/BGI provide more specific solutions to more specific issues. One key distinction is that unlike the sister concepts, the concept of NBS is more open to different interpretations, which can be useful to encourage stakeholders to take part in the discussion.

Moreover, features of NBS provide an alternative to work with existing measures or grey infrastructures. Therefore, it is important to note that very often a combination between natural and traditional engineering solutions (a.k.a. “hybrid” solutions) is likely to produce more effective results than any of these measures alone, especially when their co-benefits are taken into consideration. Different from these two terms, NBS offer an integrated way to look at different issues simultaneously. However, it is important to note that very often a combination between natural and traditional engineering solutions (a.k.a. “hybrid” solutions) is likely to produce more effective results than any of these measures alone, especially when their co-benefits are taken into consideration (Alves et al., 2019).

An important advance in the science and practice of NBS is given by the EKLIPSE Expert Working Group, which developed the first version of a multi-dimensional impact evaluation framework to support planning and evaluation of NBS projects. The document includes a list of impacts, indicators and methods for assessing the performance of NBS in dealing with some major societal challenges (EKLIPSE, 2017; Raymond et al., 2017). The framework is based on 10 challenges: 1) Climate Mitigation and adaptation, 2) Water Management, 3) Coastal Resilience, 4) Green space Management, 5) Air Quality, 6) Urban Regeneration, 7) Participatory Planning and Governance, 8) Social justice and Social Cohesion, 9) Public health and well-being and 10) Economic opportunities and Green Jobs (Raymond et al., 2017). The fact that the EKPLISE framework was specifically develop for NBS at the urban scale and only deals with challenges faced by cities. Lafortezza et al., (2018) reviewed different case studies around the world where NBS have been applied from micro-scale to macro-scale. Furthermore, an overview of how different NBS measures can regulate ecosystem services (i.e., soil protection, water quality, flood regulation, and water provision) has been carried out by Keesstra et al., (2018).
3.2 Materials and methodology

The methodology consisted of two phases as schematized in Figure 2. The first phase consisted of the identification of articles satisfying the search criteria discussed in Section 3.1. Next, all articles were screened and filtered based on the selection criteria discussed in section 3.2.

3.2.1 Search strategy

The review analysis concerned articles from scientific journals written in English. Two main concepts were used in the search: Nature-Based Solutions and hydro-meteorological risk. As the concept of ‘Nature-Base Solutions’ appears under different names (which more or less relate to the same field of research), articles related to Low Impact Developments (LIDs), Best Management Practices (BMPs), Water Sensitive Urban Design (WSUD), Sustainable Urban Drainage Systems (SuDS), Green Infrastructure (GI), Blue-Green Infrastructure (BGI), Ecosystem-based Adaptation (EbA) and Ecosystem-based Disaster Risk Reduction (Eco-DRR) were included in the identification of relevant articles (see Table 1). The review of hydro-meteorological risk included literature on relevant terms (i.e. disaster, review, hydrology etc.) and different types of risk (i.e. floods, droughts, storm surges and landslides, and the relevant terms.) (Table 1).

During the construction of the queries, the strings were searched only within Index terms and Metadata “titles, abstract, and keywords” in the Scopus database. The search terms for the two concepts were linked with the Boolean operator “AND” while the Boolean operator “OR” was used to link between the possible terms (Table 1). An example of a protocol is shown below:

```
“TITLE-ABS-KEY ( "Nature-based solutions" OR "Nature based solutions" OR "Nature Based Solutions" OR "Nature-Based Solutions" OR "Low impact development" OR "Sustainable Urban Drainage Systems" OR "Water Sensitive Urban Design" OR "Best Management Practices" OR "Green infrastructure" OR "Green blue infrastructure" AND "flood" ) AND ( LIMIT-TO ( DOCTYPE , "ar" ) OR LIMIT-TO ( DOCTYPE , "ch" ) OR LIMIT-TO ( DOCTYPE , "re" ) OR LIMIT-TO ( DOCTYPE , "bk" ) ) AND ( LIMIT-TO ( LANGUAGE , "English" ) )”
```

Figure 1. shows the number of articles that have been published on the concepts of NBS, LIDs, SuDS, WSUD, BMPs, GI, and BGI. From Fig. 1, it can be observed that since 2007 the number of scientific articles started increasing significantly. Therefore, the time window selected for the review process was from 2007 onwards.

The findings from Scopus were cross-referenced with other databases such as Web of Science and Google Scholar and the number of publications found in Scopus database was larger than the number of articles found in the other two databases.
The time window selected for the review process was from 1 January 2007 to 1 December 2018. 1407 articles published in scientific journals were found in the Scopus database and 1232 were found in the Web of Science database. The articles from both databases were combined to 2639 articles. Duplicate articles were removed, resulting in a total of 1204 articles to be considered for further evaluation.

32.2 Selection process

As stated in the introduction, this study aims at reviewing the state-of-the-art of the research on NBS that specifically address hydro-meteorological risk reduction. In this regard, the key objectives of the present review work were carefully formulated as follows:

1) To assess the state-of-the-art in research concerning both small and large scale NBS for hydro-meteorological risk reduction;

2) To review the use of techniques, methods and tools for planning, selecting, evaluating and implementing NBS for hydro-meteorological risk reduction;

3) To review the socio-economic influence in the implementation of NBS for hydro-meteorological risk reduction as well as their multiple benefits, co-benefits, effectiveness and costs;

4) To identify trends, knowledge gaps and proposed future research prospects with respect to the above three objectives.

These key objectives were defined for the review with the intention that the results could be both quantitative and qualitative. The 1204 articles resulting from the search query were thus evaluated with respect to these objectives, and those found of little or no relevance with the topic removed. This selection process involved a set of progressive steps as schematized in Figure 2.

Initially, all articles were analysed on the basis of reading titles and keywords and evaluating their relation to the search terms. Articles were discarded if their title and keywords were considered of little or no relevance to the key objectives. This step served to reduce the number of articles from 1204 to 380.

Secondly, a more in-depth analysis was conducted, based on reading the abstract of each article selected in the previous step. The criteria at this step was that the abstract should discuss hydro-meteorological risk reduction. For example, if the abstract focused more on water quality than risk, that paper was excluded. This step served to reduce the number of articles from 380 to 185.

Finally, articles were read in full to identify those that were relevant to the review objectives. Any studies appearing to meet the key objectives (dealing with subjects such as effectiveness of NBS, techniques, method and tools for planning, and others subjects relevant to the key objectives) were included in the review. As a result, the entire selection process resulted in a total of 137 articles relevant to the objectives of the present review.
As discussed in Section 2.1, the search process was based upon the following three criteria: (1) articles published in peer-reviewed, scientific journals written in English; (2) articles reported on NBS in terms of hydro-meteorological risk reduction; (3) articles published from year 2007 onwards.

Initially, the Scopus database search resulted in 1381 articles published in scientific journals. The same search performed in Web of Science and Google Scholar resulted in 1208 and 972 articles, respectively. Hence, the Scopus database was used as a main database for the purposes of the present work. To make the review process more specific, the process depicted in Fig. 2 was applied to select the relevant articles. Firstly, those duplicate articles found from the applied queries were removed. After that, all articles were analysed on the basis of their titles and keywords. Since the search of articles contained some gaps (i.e., there were several missing articles which were already known to the authors) the list of articles was appended with those missing articles. The final step was to read and analyse all selected articles.

4 Findings

4.12 Lesson from research on small and large scale NBS for hydro-meteorological risk reduction

Small and large scale NBS for hydro-meteorological risk reduction

In this review, NBS for hydro-meteorological risk reduction have been divided into small and large scale (Fig. 3). "Small scale NBS" are usually referred to as NBS at the urban or local scale, while NBS in rural areas, river basins and at the regional scale are referred to as "large scale NBS" (Fig. 3.).

4.12.1 Research on small scale NBS for hydro-meteorological risk reduction

Small scale NBS

Small scale NBS are usually applied to a specific location such as a single building or a street. However, for some cases, a single NBS is not sufficient to control a large amount of runoff. Therefore, this review discusses the application and effectiveness of both individual NBS and multiple-NBS combinations. There are 45 articles that have been reviewed on the effectiveness of small scale NBS (Table 3). A majority of these (29 articles) discuss the effectiveness of a single/individual NBS site, while only 16 articles discuss the effectiveness of multiple NBS sites (around 28 percent). A summary of effectiveness, co-benefits and cost of NBS measures at small scale is shown in Table 3.

1) Effectiveness of a single/individual NBS site

To date, various types of single NBS sites have been studied with objectives such as reduction of the flood peak (Carpenter and Kaluvakolanu, 2011; Ercolani et al., 2018; Liao et al., 2015; Mei et al., 2018; Yang et al., 2018), delay/attenuation of the flood peak (Ishimatsu et al., 2017), reduction of volume of combined sewer overflows (Burszta-Adamiak and Mrowiec, 2013)
and reduction of the surface runoff volume (Lee et al., 2013; Shafique and Kim, 2018). The review found just one article, Lottering et al., (2015) that discusses the reduction of drought risk by using NBS to reduce water consumption in suburb areas. Shafique et al., (2018) described how porous pavement can be very effective in decreasing the possibility of flash floods in the developed area in Seoul. NBS has also been used to improve water quality in Greater Melbourne, Australia (Khastagir and Jayasuriya, 2010) and in Xi’ city in China (Li et al., 2018b).

The most common NBS measures in urban areas appear to be intensive green roofs (Burszta-Adamiak and Mrowiec, 2013; Carpenter and Kaluvakolanu, 2011; Ercolani et al., 2018), extensive green roofs (Cipolla et al., 2016; Lee et al., 2013), rain gardens (Ishimatsu et al., 2017), rainwater harvesting (Khastagir and Jayasuriya, 2010), dry detention ponds (Liew et al., 2012), permeable pavements (Shafique et al., 2018), bio-retention (Khan et al., 2013; Olszewski and Allen, 2013), vegetated swales (Woznicki et al., 2018) and trees (Mills et al., 2016). However, the authors of these studies investigated the performance of such measures individually (i.e. at the specific/local/single site) without evaluating it in combination with other NBS sites or in hybrid combinations.

NBS may benefit people in coastal areas by reducing risk from storm surges, wave energy, coastal flooding as well as erosion, as documented by several authors (see for example, Coppenolle, 2018; Joyce et al., 2017; Ruckelshaus et al., 2016; Sutton-Grier et al., 2018). NBS for coastal areas can be implemented either large or small scale. They include dunes, beaches, oyster and coral reefs, mangroves, seagrass beds, and marshes. These measures can also provide habitat for different species such as fish, birds, and other wildlife (Ruckelshaus et al., 2016). However, only few articles focused on the potential benefits of NBS in coastal areas.

The literature to date acknowledges that the effectiveness of NBS greatly depends on the magnitude and frequency of rainfall events. Green roofs are recognized in reducing peak flows more effectively for smaller magnitude frequent storms than for larger magnitude infrequent storms (see for example, Ercolani et al., 2018). There are also reports that rain gardens are more effective in dealing with small discharges of rainwater (Ishimatsu et al., 2017). Swales and permeable pavements are more effective for flood reduction during heavier and shorter rainfall events. As noted by Qin et al., (2013), small practices may be not sufficient for long duration storm events with consistent rainfall. Hence, a large scale NBS could be a solution for storm events with large magnitude and long duration, which is usually the case for disaster risk reduction applications, and therefore the research in this direction is highly desirable.

Many studies recommend that there is a need to connect an individual NBS with other NBS measures (i.e., a train of NBS) to achieve better runoff control and treat more pollution (see for example, De Risi et al., 2018a; Shafique et al., 2018), to enable more effective long-term strategies and to provide a more robust response to larger events with multiple benefits (Webber et al., 2018).
Also, Zölch et al., (2017) suggested that the effectiveness of NBS should be directly linked to its ability of increasing as much as possible the storage capacities within the area of interest, while using open spaces that have not been used previously and/or while providing benefits to other areas for urban planning.

(2) Effectiveness of multiple NBS sites

Several studies which have evaluated the performance of multiple (or combined) NBS measures (see for example, Damodaram et al., 2010; Earthman et al., 2012; Huang et al., 2014; Luan et al., 2017). One of the most successful international projects in combining several NBS measures at the urban scale is the “Sponge City Programme (SCP)” in China. The SCP project was commissioned in 2014 with the aim to implement both concepts and practices of LIDs/NBS as well as various comprehensive urban water management strategies (Chan et al., 2018). Nowadays, the concept (‘Sponge City’) SCP is widely used as the concept (‘Sponge City’) for a city that needs to increase resilience to climate change. It also combines includes combination of several systems such as source control system, urban drainage system, and emergency discharge system.

Porous pavement appears as one of the most popular measures suitable to be combined with other NBS for urban run-off management. Examples of this are described in Behroozi et al., (2018) who selected swales and porous pavement to reduce peak flow and mean Total Suspended Solids (TSS) concentration. Hu et al., (2017) used inundation modelling to evaluate the effectiveness of rainwater harvesting and pervious pavement as retrofitting technologies for flood inundation mitigation at urbanized watershed. Damodaram et al., (2010) concluded that rainwater harvesting and permeable pavement is likely to be more effective than pond storage for small storms, while the pond is likely to be more effective to manage runoff from the more intensive storm.

Several studies argue that multiple NBS measures can lead to a more significant change in runoff regime than single NBS measures. For example, eight scenarios were simulated by changing the percentage of combined green roof and permeable pavement in an urban setting (Wu et al., 2018). The results show that for a scenario where green roof and permeable pavement were applied at all possible locations, a 28% reduction in maximum inundation can be obtained. In comparison, scenarios implementing either green roof or permeable pavement alone at all possible areas experienced a reduction of 14%. One of the main reasons the superior performances of combined NBS is that they are able to work in parallel, each treating a different portion of run-off generated from the sub-catchment (Pappalardo et al., 2017). For these combinations, the spatial distribution should be carefully considered because it can improve the runoff regime better when compared to centralised NBS (Loperfido et al., 2014).

Several studies argue that multiple NBS measures can lead to a more significant change in runoff regime and more effective long term strategies than single NBS measures (Webber et al., 2018). For example, Wu et al. (2018) simulated eight scenarios changing the percentage of combined green roof and permeable pavement in an urban setting. The results show that when
green roofs and permeable pavements are applied at all possible locations, a 28% reduction in maximum inundation can be obtained. In comparison, scenarios implementing either green roofs or permeable pavements alone at all possible areas experienced a reduction of 14%. One of the main reasons for the superior performance of combined NBS is that they work in parallel, each treating a different portion of run-off generated from the sub-catchment (Pappalardo et al., 2017). For these combinations, the spatial distribution should be carefully considered because it can improve the runoff regime better when compared to centralised NBS (Loperfido et al., 2014).

Further research on the use of combined green and grey infrastructures (i.e., hybrid measures) is desirable as To date only three contributions were found in the review. Alves et al., (2016) presented a novel method to select, evaluate and place different hybrid measures for retrofitting urban drainage systems. However, only fundamental aspects were touched upon in the methodology and they suggested that future work should include the possibility of considering stakeholders’ preferences or flexibility within the method. In the work of Vojinovic et al. (2017), a methodological framework that combines ecosystem services (flood protection, education, art/culture, recreation and tourism) with economic analysis for the selection of multifunctional measures and consideration of small and large scale NBS has been discussed for the case of Ayutthaya in Thailand. Onuma and Tsuge, (2018) compared the cost-benefits and performance between of NBS and grey infrastructures, concluding that NBS are likely to be more effective when implemented through cooperation with local people, whereas hybrid solutions are more effective than a single NBS in terms of performance.

The first limitation of the above studies is that they only assess the effectiveness at urban scales. This may not be sufficient for large events as climate change is likely to increase the frequency and intensity of future events. Large scale NBS may provide a more significant impact in different management scenarios than just for an urban watershed (Giacomoni et al., 2012). Although Fu et al., (2018) analysed variations in runoff for different scales and land-uses, the impact of NBS was only examined for the small urban scale. There is only one article that deals with hybrid measures (i.e., NBS/green infrastructure and grey infrastructure) and also with combinations of small and large scale NBS. In the work of Vojinovic et al., (2017), a methodological framework that combines ecosystem services (flood protection, education, art/culture, recreation and tourism) with economic analysis for selection of multifunctional measures and consideration of small and large scale NBS has been discussed for the case of Ayutthaya in Thailand. The third limitation is that none of these contributions have incorporated cost-benefit analyses (CBA). CBA can be used as a tool to support the decision-making process as they serve the feasibility of implementing cost and the potential benefits of NBS.

4.12.2 Research on large-scale NBS for hydro-meteorological risk reduction

Large-scale water balance, water fluxes, water management and ecosystem services are affected by future changes such as climate change, large-scale land use changes, water use changes and population growth. Therefore, To address such challenges, large scale NBS are needed to make more space for water to retain, decelerate, infiltrate, bypass, and discharge
Generally, a large-scale NBS combines different NBSs within a larger system to achieve better long-term strategies. There are some examples of NBS measures for DRR which are summarized in McVittie et al., (2018) and a summary of effectiveness, co-benefits and cost of large scale NBS measures is shown in Table 4.

There are very few articles that have addressed combined behaviour of NBS at the large or catchment scale (see also Table 3). One of the possible reasons is that large-scale systems are much more complex than small-scale systems. The most common large-scale NBS are wetlands (Thorslund et al., 2017b), river restoration (Chou, 2016), flood storage basins (De Risi et al., 2018b), preservation and regeneration of forests in flood-prone areas (Bhattacharjee and Behera, 2018) and making more room for the river (Asselman and Klijn, 2016; Klijn et al., 2018), wetlands (Thorslund et al., 2017), and mountain forestation (Casteller et al., 2018).

A classic example of a large-scale NBS implementation is the ‘Room for the River Programme’ which was implemented along the Rhine and Meuse rivers in the Netherlands (Klijn et al., 2018). The Room for the River Programme consisted of 39 local projects based on nine different types of measures (Klijn et al., 2013). These measures are flood plain lowering, dike relocation, groyne lowering, summer bed deepening, water storage, bypass/floodway, high water channels, obstacles removing and dikes strengthening. The benefits that the programme achieved are more than just reducing the flooding but also increasing opportunities for recreation, habitat and biodiversity in the area (Klijn et al., 2013)

Another case study of a large scale NBS is the Laojie river project in Taoyuan City in Taiwan. The study focused on changing the channelised culverted flood-control watercourse into an accessible green infrastructure corridor for the public (Chou, 2016). The landscape changes resulting from this project have increased recreation activities and improved the aesthetic value in the area.

NBS may benefit people in coastal areas by reducing risk from storm surges, wave energy, coastal flooding as well as erosion, as documented by several authors (see, for example, Coppenolle, 2018; Joyce et al., 2017; Ruckelshaus et al., 2016; Sutton-Grier et al., 2018). NBS for coastal areas can be implemented either at large or small scales. They include dunes, beaches, oyster and coral reefs, mangroves, seagrass beds and marshes. These measures can also provide habitat for different species such as fish, birds, and other wildlife (Ruckelshaus et al., 2016). However, only a few articles of the 137 reviewed focused on the potential benefits of NBS in coastal areas.

Casteller et al. (2018) concluded that native mountain forests could be used to reduce hydro-meteorological risk such as flash floods and landslides. To reduce the impact of large-scale hydro-meteorological events, more research is needed on large-scale NBS and their hybrid combinations designed to attenuate flows and improve drainage. They should be implemented to include improvements in solid waste management, community-based river cleaning programs and reforestation (De Risi et al., 2018b).
environments. Specifically, PHUSICOS’s main aim is to implement and evaluate NBS at regional scale in three large-scale demonstration sites representative of the typical hazards (floods, droughts, landslides) throughout rural and mountainous regions in Europe. OPERANDUM’s main aim is to demonstrate viability of NBS in ten sites in Europe, China and Australia including the testing at coastal areas were coastal erosion and storm surge may occur in present and future climate scenarios.

Development of techniques, methods and tools for planning, selecting, evaluating and implementing NBS are among the common products of RECONECT, PHUSICOS and OPERANDUM.

4.23 Techniques, methods and tools for planning, selecting, evaluating and implementing NBS

Figure 4.6 illustrates a typical process for selection and evaluation of NBS (see, for example, (Alves et al., 2016a, 2018). The process starts by selecting possible measures that correspond to the local characteristics and project’s target. The next step is concerned with evaluating their performance using numerical models, cost-benefit analysis and/or multi-criteria analysis. However, for more complex system such a large number of scenarios and parameters, optimisation can be used to maximise the benefits and minimise the costs. The processes above are possible to combine in one tool or to use combination of existing tools to select and evaluate NBS. The techniques, methods and tools for planning, selecting, evaluating and implementing NBS that have been used are reviewed in the following section.

4.23.1 Selection of NBS based on local constraints

To date, it has been a well-accepted fact that not all NBS are suitable for all conditions. Therefore, it is important to consider the feasibility and constraints at the site at an early stage in the selection process. The first consideration in selecting NBS is to define the objective such as the target area (i.e. urban, rural) and performance requirements such as quantity and/or quality (Romnée and De Herde, 2015; Zhang and Chui, 2018). For example, Pappalardo et al., (2017) chose permeable pavements and green roofs because they can detain runoff or infiltrate it to the subsoil. Many authors suggest restricting the choice of appropriate NBS based on common site constraints such as land use, site characteristics (i.e. soil type, groundwater depth, depth to bedrock), catchment characteristics, political and financial regulations, amenities, environmental requirements and space available (Chen et al., 2013; Eaton, 2018; Joyce et al., 2017; Nordman et al., 2018; Oraei Zare et al., 2012). For example, Eaton (2018) selected bio-retention measures because these are more suitable in low-density residential land use.

Therefore, a screening analysis is necessary to select the NBS measures that are best suited to local constraints and objectives, providing decision-makers with valuable information. Also, the study of Reynaud et al., (2017) describes how the type of NBS has an impact on individuals’ preference for ecosystem services.

The way forward in the selection of NBS is to consider spatial planning principles to locate the position for measures. Spatial planning principles can facilitate and stimulate discussion among local communities, researchers, policy makers and government authorities.
4.23.2 Frameworks and methods for evaluation of NBS

There are several frameworks and methods that can be used to evaluate the performance indicators of NBS that are discussed in this review. One of the most popular evaluation approach is to analyse, simulate and model hydrology, hydraulics and water balance processes. This information is then used to support decision makers, planners and stakeholders in their evaluation performance and potential of NBS by comparing modelled results against current situation, baseline scenario or targets (Jia et al., 2015). The Curve Number infiltration method can also be used to estimate rainfall runoff based on ground coverage, soil type and precipitation (Maragno et al., 2018).

In addition to the hydrological and hydraulic analysis, cost-benefit analysis is often used to select and implement a cost-effective NBS (Huang et al., 2018; Nordman et al., 2018; Watson et al., 2016; Webber et al., 2018). The common benefits considered include prevented damage costs, omitted infrastructures, profit loss to businesses, prevented erosion damage, and prevented agricultural losses. One cost-benefit approach is to evaluate NBS by applying the whole life cycle costing approach (LCC) including construction, operation, maintenance and opportunity costs (Nordman et al., 2018) and Return on Investment (ROI) (De Risi et al., 2018).

An alternative method for the evaluation of NBS is multi-criteria analysis (MCA), which has the potential to integrate and overcome the differences between social and technical approaches, (Loc et al., 2017). It can be used to structure complex issues and help find a better comprehension of costs and benefits. Such analysis is useful for decision makers when there are multiple and conflicting criteria to be considered (Alves et al., 2018; Loos and Rogers, 2016). The MCA takes different criteria into account and assigns weights to each criterion. This process can produce ranking of the different measures that can be implemented on the site (Chow et al., 2014; Jia et al., 2015). For examples, Loc et al., (2017) who integrated the results from numerical modelling and social surveys into a MCA and ranked the alternatives based on the evaluation criteria, which are flood mitigation, pollutant removal and aesthetics. Loos and Rogers, (2016) applied multi-attribute utility theory (MAUT) to assess utility values for each alternative by assuming that preference and utility are independent from each other. Petit-Boix et al., (2017) recommended that future research should combine the economic value of the predicted material and ecological damage, risk assessment models and environmental impacts of NBS.

Since not all assessments can be done with modelling alone, interviews and fieldwork are often necessary. For instance, Chou (2016) used eighteen open questions from six topics, namely: accessibility; activities; public facilities; environmental quality; ecological value; and flood prevention. These questions are used to evaluate the qualitative performance of river restoration. However, some of the methods are only appropriate for small scale applications and cannot be applied in large catchments. Yang et al., (2018) proposed Relative Performance Evaluation (RPE) methods, which use a score to calculate the performance for all alternatives. This score is calculated as the weighted sum of the scores of individual indicators.
From the discussion above, it can be observed that there are still challenges in evaluating intangible benefits of NBS and incorporating stakeholders’ preferences into the process. For complex systems with a large number of scenarios and parameters, simple trial-and-error methods may not be the feasible approach. In such cases, an automated optimisation method could be effectively applied to handle these tasks and to combine the above mentioned methods. There is also a challenge in combining a range of aspects that can and cannot be expressed in monetary terms into the same framework of analysis.

4.23.3 Optimal configuration of NBS

In order to implement NBS, typical selection factors include the number of NBS measures, size, location, and potential combinations of NBS. Optimisation of NBS strategies has been increasingly used in the context of urban stormwater management. Most of the studies to-date focus on minimising water quantity and improving water quality by selecting the type, design, size and location of NBS (Behroozi et al., 2018; Gao et al., 2015; Giacomoni and Joseph, 2017; Zhang and Chui, 2018). Zhang and Chui (2018) have systematically reviewed optimisation models that have different structures, objectives and allocation components. This section reviews some examples of using optimisation to assess NBS.

(1) Comprehensive modelling systems

A comprehensive modelling system typically refers to an optimisation package tool that integrates an “easy-to-use” user interface with physically based deterministic models. Examples include SUSTAIN (the System for Urban Stormwater Treatment and Analysis IntegratioN) (Zhang and Chui, 2018) and Best Management Practice Decision Support (BMPDSS) (Gao et al., 2015). The SUSTAIN model was developed by the United States Environmental Protection Agency (US EPA) and it aims to provide decision makers with support in the process of selection and placement of NBS measures, and to optimise the hydrological performance and cost-effectiveness of NBS in the urban watershed (Leslie et al., 2009; Li et al., 2018a). There are several studies that apply SUSTAIN with the attempt to minimise the cost of NBS for both runoff quantity (flow volume, peak flow) and runoff quality (pollutant removal) (Gao et al., 2015; Li et al., 2018c).

It is however important to note that comprehensive modelling systems are not always easily modified to fit with the specific needs of users.

(2) Tools based on integration between optimization algorithms and numerical models

Another optimisation tool approach is integrated model-algorithm tools combine numerical (hydrological-hydrodynamic) models with optimisation algorithms. A popular optimisation method used to evaluate NBS performance is a multialgorithm, genetically adaptive multiobjective (AMALGM) method using the multilevel spatial optimisation (MLSOP) framework (Liu et al., 2016). AMALGM includes Non-dominated Sorting Genetic Algorithm II (NSGA-II), Adaptive metropolis search (AMS), particle swarm optimisation (PSO), and differential evolution (DE) (Wang et al., 2015).
In the reviewed articles, Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used in most of the studies to date. Wang et al., (2015) concluded that NSGA-II remains as one of the most popular multiobjective evolutionary algorithms (MOEAs) despite limited parameter tuning features, and generally outperformed the other MOEAs in relation to the set of solutions generated, even with limited parameter tuning, and generally outperformed the other MOEAs concerning the number of solutions contributing to the best known nondominated set of each problem. There are several examples of the use of NSGA-II. Oraei Zare et al., (2012) minimised run-off quantity while maximizing the improvement of water quality and maximising reliability. Karamouz and Nazif, (2013) minimised cost of flood damage as well as minimising BMP cost in order to improve system performance in dealing with the emerging future condition under climate change impact. Yazdi and Salehi Neyshabouri, (2014) optimised cost-effectiveness, which focused on land use change strategies including orchard, brush and seeding measures in different parts of the watershed. All of the above mentioned studies coupled NSGA-II with the Storm Water Management Model (SWMM) developed by US EPA (Cipolla et al., 2016; Li et al., 2018b; Mei et al., 2018; Tao et al., 2017; Wu et al., 2018; Yang et al., 2018; Zhu and Chen, 2017) to address the optimisation problems.

There are two different optimisation methods of Particle Swarm Optimization (PSO) which have been found in the course of this review. The modified Particle Swarm Optimization (MPSO) is used by (Duan et al., 2016) to solve the Multi-Objective Optimal (MOO) of the cost-effectiveness of NBS based detention tank design. Similarly, Behroozi et al., (2018) used the multi-objective particle swarm optimisation (MOPSO) to deal with multi-objective optimisation problem by coupling it with SWMM to optimise the peak flow and mean TSS concentration reduction by changing the combinations of NBS.

Another algorithm that is used for optimising the performance of NBS is Simulated Annealing (SA) (Kirkpatrick et al., 1983). SA is a general probability optimisation algorithm that applies thermodynamic theories in statistics. An example of a study with SA is given by Huang et al., (2018) who automatically linked SA with SWMM to maximise cost-benefit for flood mitigation and layout design. The cost-benefit analysis is computed using annual cost, which includes both annual fixed cost and annual maintenance cost. Another study that applied SA is Chen et al., (2017) who combined SA with SWMM to locate NBS in Hsinchu County in northern Taiwan by considering three objective functions. These were minimising depths, durations, and the number of inundation points in the watershed.

It can be observed that most of the optimisation models to date (both comprehensive modelling system and model algorithms) are coupled with SWMM for urban storm management. There is still a lack of research that uses optimisation to maximise the efficiency of NBS on a large scale as well as combining other co-benefits in optimisation (Table 3). Furthermore, there is a lack of research that employs two-dimensional models in the optimisation analysis. This is particularly important when considering estimation of flood damages and other flood propagation-related impacts.
4.23.4 Tools for selection, evaluation and operation of NBS

Recently, several selection and evaluation tools (both standalone and web-based) have been developed in order to assist stakeholders in screening, selecting and visualising NBS measures. Examples of web-based applications which are developed to screen urban NBS measures are Green-blue design tool (atelier GROENBLAUW, 2019), PEARL KB (Karavokiros et al., 2016; PEARL, 2019b), Climate Adaptation App (Bosch Slabbers et al., 2019) and Naturally resilient communities solutions (Naturally Resilient Communities, 2019). These web-based tools allow the user to filter NBS in relation to their problem type, measure, land use, scale, and location.

In addition to the above, there are also tools that combine both the selection and evaluation processes together to use as planning support systems tool. An example of such tools which is used to evaluate the performance of NBS is the SuDS selection and location (SUDSLOC) tool, which is a GIS tool linked to an integrated 1D hydraulic sewer model and a 2D surface model. Planning-support tool is known as UrbanBEATS (the Urban Biophysical Environments and Technologies Simulator), which aims to support the planning and implementation of WSUD infrastructure in urban environments (Bach et al., 2018). Other tools that can be used to select and evaluate potential NBS interventions are Long-Term Hydrologic Impact Assessment-Low Impact Development (L-THIA-LID) (Purdue University, 2019) in a web-based application –(Ahiablame et al., 2012; Liu et al., 2015) and the GIS-based tool called Adaptation Support Tool (AST) (van de Ven et al., 2016; Voskamp and Van de Ven, 2015). Although these tools could be useful in assisting decision makers, some of them may not be suitable for every location and scale. For example, source data required into L-THIA-LID cover only United States and QUADEAU (Romnée and De Herde, 2015) is only suitable for urban stormwater management in a public space scale.

In addition to the above, other models such as MIKE packages developed by DHI (Semadeni-Davies et al., 2008) Model of Urban Sewers (MOUSE), nowadays known as MIKE URBAN, MIKE FLOOD and MIKE SHE developed by DHI (Semadeni-Davies et al., 2008), Soil and Water Assessment (SWAT) (Cheng et al., 2017), IHMORS (Herrera et al., 2017), and Urban Water Optioneering Tool (UWOT) (Rozos et al., 2013) can be effectively used in the analysis of NBS.

To date, only few tools have been developed to calculate multiple benefits of NBS in monetary terms as well as to address their qualitative benefits. Some examples are Benefits of SuDS Tool (BeST), which is an Excel-Based decision-support tool that provides a structured approach to evaluating potential benefits of NBS (Digman et al., 2016; Donnell et al., 2018), Blue-Green Cities toolbox which is a GIS toolbox to evaluate multi-benefits, including flood damage reduction, water quality, attractiveness, property prices, habitat size, carbon dioxide sequestration, and reduction in air and noise pollution (BGC, 2016), and the MUSIC tool (Model for Urban Stormwater Improvement Conceptualization) which is a conceptual planning and design tool that also contains a life cycle costing module for different NBS that are implemented in Australia (Jayasooriya et al., 2016; Khashigir and Jayasuriya, 2010; Schubert et al., 2017).
There are also other tools that can be used for modelling stormwater management options and/or to perform assessment of economic aspects of NBS in urban areas. These are documented in the work of Jayasooriya and Ng, (2014). However, most of these tools only focus on small-scale NBS such as bio-retentions, pervious pavements, green roofs, swales, constructed wetlands, extended retention basins, retention ponds, sand filters, biofiltration tree planters and rainwater harvesting. There are only a few tools that can address river and coastal flood protection measures and droughts while none of tools can be used to reduce the risk from landslides and storm surges. A lack of information systems, information clusters and platforms for exchange-information exchange between authorities and practitioners has been recognized by Kabisch et al., (2016).

There is also the need to explore the use of sensors, regulators, telemetry and Supervisory Control and Data Acquisition (SCADA) systems for efficient and effective operation and real-time control of NBS. Such configuration, which is based on the use of real-time control technology for operation of NBS, can be referred to as “SMART NBS”. The value of exploring SMART NBS configurations may be particularly beneficial for hybrid systems, where NBS sites need to be configured to work closely with different kinds of measures (e.g., traditional grey infrastructure measures).

4.34 Socio-economic influence on implementation of NBS

Investing in NBS for hydro-meteorological risk reduction is essential to ensure the capability for future socio-economic development (Faivre et al., 2018). In this respect, the European Commission has been investing considerably in the research and innovation of NBS or EbA and some recent efforts have been placed on practical demonstration of NBS for climate change adaptation and risk prevention (Faivre et al., 2017).

The European Commission is dedicated to bringing innovative ‘sciences-policy-society’ mechanisms, open consultations, and knowledge-exchange platforms to engage society in improving the condition for implementation of NBS (Faivre et al., 2017). There are some inventories of web-portals, networks and initiatives that address NBS at European, national and sub-national levels (Table 4).

Denjean et al., (2017) noted that the people who propose NBS are in many cases ecologists and biologists who have been trained within a very different scientific paradigm and thus speak a ‘different language’ than to the key decision makers, who are often civil and financial engineers, contractors and financing officers. Hence, this may limit the feasibility of implementation of NBS.

Very few articles study actions or processes in relation to stakeholder participation (Table 3). However, those that do so they stress the importance of involving stakeholders in the evaluation and implementation of NBS and the current practical limitations of implementing NBS. One of the important reasons for these is to ensure that stakeholders and local government are fully aware of multiple benefit of NBS so that they can integrate them better into planning for sustainable cities (Ishimatsu et al., 2017). For example, Liu and Jensen, (2018) and Chou, (2016) claim that the implementation of NBS with visible benefits on the landscape and the liveability of the city (in terms of amenities, recreation, green growth, and microclimate) can create
positive attitudes among stakeholders towards applying NBS. Moreover, as the implementation of NBS is often a costly investment for local communities, and the facilities are expected to be in place for a decade, it is essential for stakeholders to know the effectiveness of NBS (Semadeni-Davies et al., 2008). The involvement of researchers and stakeholders is important for monitoring, assessing and forecasting scenarios (Stanev et al., 2014). Involving the community with authorities in both the planning and implementing process can be a very useful strategy (Dalimunthe, 2018). A case study of Great Plains in the US, Vogel et al., (2015) addressed how local perceptions of NBS effectiveness and applicability limit its adoption. One of the factors was a lack of awareness of NBS and support from stakeholders and authorities. Another case in Portland, Oregon, USA, Thorne et al., (2018) concluded that the limited adoption of NBS is caused by the lack of confidence in public preferences and socio-political structures as well as the uncertainty regarding scientific evidence related to physical processes.

To solve this, they suggested that both socio-political and biophysical uncertainties must be identified and managed within the framework for designing and delivering sustainable urban flood risk management.

Schifman et al., (2017) proposed a Framework for Adaptive Socio-Hydrology (FrASH) that can be used in NBS planning and implementation by bringing ideas together from socio-hydrology, the capacity for adaptation, participation and inclusiveness, and organised action. The framework also helps in creating a connected network between municipalities, public works departments, organisations and people in the community. This potentially allows for the management of resilience in the system at multiple scales.

Often, it is not as easy to address socio-economic issues as technical questions. These socio-economic issues include perception and acceptance, policies, interdisciplinary nature of LID, education, and documenting the economic benefit of NBS implementation (Vogel et al., 2015). Nevertheless, qualitative research (i.e. surveys, interviews, and focus groups) helps to review and gain insights about the obstacles and motivations for implementing NBS as well as to understand a community’s resilience and adaptive capacity (Matthews et al., 2015). For instance, bringing the findings to stakeholders and community members to discuss on what level of flood hazards is acceptable and what level of climate change adaptation capacity the community plans to achieve (Brown et al., 2012). Moreover, socio-political dynamics in NBS is still lacking, there are only few case studies available that critically evaluate the politics of NBS in the role of community mobilization (Triyanti and Chu, 2018).

Not only it is essential to involve stakeholders in the selection, planning, design and implementation of NBS, but it is also important for bridging gaps between researchers, engineers, politicians, managers and stakeholders. This may help to improve our capacity for using both small and large scale NBS. There is a well documented range of policy arrangements, scientific niches and current status of governance studies of NBS that were reviewed by Scarano, (2017) and Triyanti and Chu, (2018).
Multiple-benefits of NBS

The literature on NBS, SuDs, BMPS, LIDs, GI, EbA, and Eco-DRR increasingly refers to multiple benefits on social, economic and environmental enhancements. The reason for that is that NBS are regarded as sustainable solutions that use ecosystem services to provide multiple benefits for human well-being and the environment, which differs from grey infrastructure. One of the processes that could provide these benefits is to give more significant consideration to landscape, and adaptive and multi-functionality design (Lennon et al., 2014; Vojinovic et al., 2017), restoring naturally occurring ecosystems and promoting desirable soil (Keesstra et al., 2018).

The literature to date shows that multiple challenges can be continually addressed through NBS. These include reducing flood risk (Song et al., 2018), storing and infiltrating rainfall run-off, delaying and reducing surface runoff, reducing erosion and particulate transport (Loperfido et al., 2014) recharging groundwater discharge, reducing pollution from surface water (Donnell et al., 2018), increasing nutrient retention and removal (Loperfido et al., 2014), maintaining soil moisture, and enhancing vegetation growth.

Beyond water management, the case for these natural capital approaches includes their ability to provide additional benefits on improving socio-economic aspects and human well-being through recreational areas and aesthetic value (Song et al., 2018), as well as encouraging tourism through the access to nature (Sutton-Grier et al., 2018). Green space can also provide a safe area for physical activity such as walking, jogging and cycling (Fan et al., 2011). Wheeler et al., (2010) quantified the volume and intensity of children’s physical activity in greenspace and found that time in greenspace is more likely to lead to greater activity intensity amongst children. The use of NBS can bring economic benefits in different ways such as reduced/prevented damage cost from hydro-meteorological events (Klijn et al., 2015), economic benefit from the reduction of stormwater that typically needs to be treated in a public sewerage system and energy and carbon savings from reduced building energy consumption (heating and cooling) (Soares et al., 2011).

The environmental benefits of NBS measures can have various positive impacts. Some of the most important are the ability to enhance environmental and ecosystem services by connecting habitat and biodiversity (Hoang et al., 2018; Reguero et al., 2018; Thorslund et al., 2017b), increasing carbon consequences, reducing air and noise pollution (Donnell et al., 2018); and improving urban heat island effect mitigation (Raymond et al., 2017).

Zhang and Chui, (2019) reviewed the hydrological and bio-ecological benefits of NBS across spatial scales and suggested that there should be more research at the catchment scale to consider the full benefits of NBS. The hydrological and water quality benefits of NBS have been widely reviewed and discussed, but there are few articles that focus on the assessment of multi-benefits of NBS. Hoang et al., (2018) proposed a new integrated methodology using a GIS approach to assess benefits and disadvantages of NBS, which include habitat connectivity, recreational accessibility, traffic movement, noise propagation,
carbon sequestration, pollutant trapping and water quality. Donnell et al., (2018) used BEST and the Blue-Green Cities toolbox to assess benefits, and Mills et al., (2016) assessed air pollution reduction based on tree canopy cover. Alves et al., (2019) presented a novel methodology for valuing co-benefit for NBS application in urban contexts. In order to evaluate benefits effectively, Fenner, (2017) recommended that their spatial distribution should be assessed through multi-functional design making possible to identify how this is valuable to stakeholders and where the overall aggregated benefits occur. There is still a need for deeper understanding of assessment of multi-benefits in managing stormwater (Liu et al., 2017). A challenge is the lack of information on the values of ecosystem and multi-related ecosystems economic valuation (Bennett et al., 2009).

4.5 TRENDS, KNOWLEDGE GAPS AND FUTURE RESEARCH PROSPECTS

The literature reviewed in this study showed that NBS have not been equally applied to all hydro-meteorological risk reduction contexts. The search strategy adopted in this review (Section 3.1) identified a total of 1204 Journal articles from 2007 to the end of 2018. However, only 85 out of 1204 articles (i.e., 7%) explicitly used the term “Nature-Based Solution” for hydro-meteorological risk reduction (Fig. 5a). This can be explained by the fact that the term NBS has been used only from 2008 (MacKinnon et al., 2011) while other terms have been used earlier in different countries (Figure 1). However, the significant increase of published articles in recent years shows how NBS is a rapidly growing research area (Fig. 5a).

Of the 1204 articles, only 137 publications specifically address NBS for hydro-meteorological risk reduction (Section 3.2). Among those, only 13 articles deal with large scale NBS, mostly focusing on river and coastal flooding (Table 6). The review of the 137 articles indicates that most of the research to date has been carried out in an urban context, whereas the contexts concerning river and coastal floods, droughts and landslides are the least addressed. More specifically, 88% of all articles deal with runoff reduction or flood risk reduction in urban areas (Fig. 5b). It is worthwhile to notice that two out of the ten search terms in Table 2 contain the word “urban”. This was in order to include two popular concepts linked to NBS for hydro-meteorological risk, which are WSUD and SUDs (cf. the overview of terminology given in Section 2). Nevertheless, the literature sourced using these two search terms only accounts for 2.9% of the total 88% urban cases shown in Figure 5b. Therefore, no significant bias was introduced in our findings by the inclusion of the word “urban” through these two search terms.

An overview of quantitative results, some research gaps and future research prospects are given in Table 6 and some of the key challenges are summarised below.

There is a clear gap between the amount of research on small scale NBS in urban areas and large scale NBS at the catchment (river basin), rural, and regional scale. The reason for this is that a large-scale system is more complex than a small system. Therefore, research and frameworks that deal with reducing hydro-meteorological risk by upscaling NBS from urban scale to catchment (river basin) scale would be beneficial. It would be also beneficial to understand both the natural processes of large
scale NBS and how they change over time. Furthermore, there are only a few studies that combine NBS at both small- and large-scale, and further research in this direction is highly desirable.

Obviously, there is no single NBS solution that can solve all problems. Every project needs to be designed to address a particular challenge in its local context and in its respective community. Therefore, an understanding of site conditions is necessary for NBS to achieve the target of the project.

Based on the findings of the literature review, there are still challenges in relation to methods and tools for planning and implementing NBS. These include improving and developing methods for assessing co-benefits (especially socio and ecological benefits, i.e., aesthetic values, community liveability, and human health), frameworks and methods for evaluating large-scale NBS and “hybrid measures” (i.e., combinations of grey infrastructure and small and large scale NBS).

There are also challenges in incorporating local stakeholder participation within the framework and models and within the assessment and implementation process. Other challenges regarding governance are to develop guidance on effective models of governance, provide insight information on actors, institutions and legal instruments and other requirements that are relevant for implementing NBS. The reason for this is the lack of workable frameworks that can bring together a variety of stakeholder groups. Moreover, there is still a lack of finance studies and guidelines for cost-effective implementation, maintenance and operation of NBS projects, and mechanisms that can be used to promote new business and finance models for successful implementation of NBS.

There should also be more efforts in the development of assessment tools that incorporate new technologies such as real-time control systems, forecast models, and coupled models to provide more active and integrated operational solutions (i.e., SMART NBS). There is a need for the development of databases that include functions, benefits, and costs of large and small scale NBS to facilitate future research.

The literature material reviewed in this study showed that NBS have not been equally applied to all hydro-meteorological risk reduction contexts. The review identified in total 1381 Journal articles from 2007 to the end of 2018. The patterns of all terminologies of NBS were analysed using 166 publications for hydro-meteorological risk reduction. An overview of some research gaps and future research prospects is given in Table 3.

Most of the literature to date is about NBS in urban areas whereas those contexts concerning river and coastal floods, droughts and landslides are the least addressed. 88% of all articles were concerned with runoff reduction or flood risk reduction in urban areas (Fig. 4a). Also, only 62 out of 1381 articles (i.e., 4.5%) explicitly used the term “Nature-Based Solution” for hydro-meteorological risk reduction. This can be explained due to difference in terms used in different countries while the term NBS has been used only from 2008 (Fig. 3). However, the significant increase of published articles in recent years testifies how NBS is a rapidly growing research area (Fig. 4b).
In terms of the other relevant literature (i.e., literature that is not published in scientific journals but found to be relevant for the subject matter) the following documents were identified: EKLIPSE, 2017; Asian Development Bank, 2016; Sekulova and Anguelovski, 2017; Kabisch et al., 2017; Renaud et al., 2016.

5 Conclusions

The present paper provides a critical review of the literature and identifies future research prospects based on the current knowledge gaps in the area of Nature-Based Solutions for hydro-meteorological risk reduction. The review process started by analysing 1407 articles sourced from Scopus and 1232 articles from Web of Science from 1st January 2007 to 1st December 2018. The final full analysis was performed on 137 articles. The systematic review has shown that considerable achievements have been made to date. However, there are still many challenges and opportunities in extending the knowledge of NBS, and that will play an important role in the coming years. Some examples of research gaps are: combining small scale and large scale NBS, the effectiveness of NBS in reducing risk at the regional and catchments scale, the frameworks, methods, and tools for assessing co-benefits, involvement local stakeholders in the selection, assessment and implementation process, integration of NBS with new technologies and development of NBS databases.

The review process started by analysing 1381 articles sourced from Scopus from 2007 onwards. The articles sourced from Scopus were also cross referenced with the articles from Web of Science and Google Scholar. The final full analysis was performed on 159 closely related articles. The systematic review has shown that considerable achievements have been made to date. However, there are still many challenges and opportunities in extending the knowledge in NBS and that will play an important role in the coming years.

Some of the key concluding remarks are summarised below.

There is a clear gap between the amount of research on small scale NBS in urban areas and large scale NBS at the catchment (river basin), rural, and regional scale. The reason for this is that a large scale system is more complex than a small system. Therefore, the research and frameworks that deal with the problem of reducing hydro-meteorological risk with upscaling NBS from urban scale to catchment (river basin) scale would be beneficial, and it would be also beneficial to understand both the natural processes of large scale NBS and how they change over time. Furthermore, there are only few studies that combine NBS at both small and large scale and further research in this direction is highly desirable.

Obviously, there is no single NBS solution that can solve all problems. Every project needs to be designed to address a particular challenge in its local contexts and in its respective community. Therefore, an understanding of site conditions is necessary for NBS to achieve the target of the project.
Based on the findings of the literature review, there are still challenges in relation to methods and tools for planning and implementing NBS. These include improving and developing methods for assessing co-benefits (especially socio- and ecological benefits i.e. aesthetics values, community livability, and human health), frameworks and methods for evaluating large-scale NBS and "hybrid measures" (i.e. combinations of grey infrastructure and small and large scale NBS).

There are also challenges in incorporating local stakeholder participation within the framework and models and within the assessment and implementation process. Other challenges regarding governance are to develop guidance on effective models of governance, provide insights information on actors, institutions and legal instruments and other requirements that are relevant for implementing NBS. The reason for this is the lack of workable frameworks that can bring together variety of stakeholder groups. Moreover, there is still a lack of finance studies and guidelines for cost-effective implementation, maintenance and operation of NBS projects and mechanisms that can be used to promote new business and finance models for successful implementation of NBS.

There should also be more efforts in the development of assessment tools that incorporate new technologies such as real-time control systems, forecast models, and coupled models to provide more active and integrated operational solutions (i.e., SMART NBS). There is the need for the development of databases that include functions, benefits, and costs of large and small scale NBS to facilitate future research.

Overall, investments in NBS will benefit society by providing cost-effective measures and adaptive strategies that protect their communities and achieve a range of co-benefits. Therefore, bridging the gaps between researchers, engineers and stakeholders will help to improve the capacity of NBS in reducing hydro-meteorological risk as well as considering the multitude of opportunities and benefits of NBS for co-creation and co-development in intensive participation process. Strengthening this aspect maybe beneficial in improving acceptance at local level.

The effectiveness, benefits and acceptances of NBS are dependent on the implementation purposes, local context and cultural setting. For example, small scale NBS (i.e., swales, green roofs, or porous pavements) are more suitable for urban flooding while large scale NBS (river restoration, dunes, or wetlands) are more suitable for river floods, coastal floods, droughts and landslides. Small scale NBS are more effective in reducing peak for smaller magnitude frequent storms (i.e., 2-year return period) than larger magnitude infrequent storms (i.e., 10-year return period). Large scale NBS can provide more benefits compared to small scale NBS because they encompass larger space, thus more function can be included in the design process. For example, Laojie river project in Taoyuan City in Taiwan changed the channel into an accessible green corridor. This project helps in reducing flood risk, improving riverside landscapes, increasing recreation area, increasing the aesthetic value in the area, and improving river water quality. On the other hand, small scale NBS need less area because most of the measures can be implemented in the free space. For example, green roofs can be implemented on the roofs of buildings, and permeable pavements can be implemented in car parks. Investments in NBS will benefit society by providing cost-effective measures and adaptive strategies that protect their communities and achieve a range of co-benefits. Therefore, bridging the gaps between
researchers, engineers and stakeholders will help to improve the capacity of NBS in reducing hydro-meteorological risk as well as increasing their benefits. Strengthening these aspects may be beneficial for improving acceptance of NBS at the local level.

Three Horizon 2020 projects including, RECONECT, PHUSICOS and OPERANDUM were initiated in 2018 to bridge the gaps in the innovation of NBS and to test their efficacy in rural, mountain and transition land environments. Development of techniques, methods and tools for planning, selecting, evaluating and implementing NBS are among the common products of RECONECT, PHUSICOS and OPERANDUM.

6 Acknowledgements

Production of this article received funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No 776866 for the research RECONECT (Regenerating ECOsystems with Nature-based solutions for hydro-meteorological risk rEduCTion) project. It was also supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No 776848 for OPERANDUM and under grant agreement No 776681 for PHUSICOS. The study reflects only the authors’ view and the European Union is not liable for any use that may be made of the information contained herein.

15 Appendix

Appendix A: Abbreviations

AMSI Adaptive metropolis search
AST Adaptation Support Tool
BeST Benefits of SuDS Tool
BGI Blue-Green Infrastructure
BMPDSS Best Management Practice Decision Support
BMPs Best Management Practices
CBA Cost-benefit analyses
CBD Convention on Biological Diversity
CCA Climate change adaptation
CEM Commission on Ecosystem Management
DE Differential evolution
DRR Disaster risk reduction
EbA Ecosystem-based Adaptation
Eco-DRR Ecosystem-based Disaster Risk Reduction
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>FrASH</td>
<td>Framework for Adaptive Socio-Hydrology</td>
</tr>
<tr>
<td>GI</td>
<td>Green Infrastructure</td>
</tr>
<tr>
<td>IIED</td>
<td>International Institute for Environment and Development</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>LCC</td>
<td>Life cycle costing</td>
</tr>
<tr>
<td>LID</td>
<td>Low Impact Development</td>
</tr>
<tr>
<td>MAUT</td>
<td>Multiattribute utility theory</td>
</tr>
<tr>
<td>MCA</td>
<td>Multi-criteria analysis</td>
</tr>
<tr>
<td>MLSOP</td>
<td>Multilevel spatial optimization</td>
</tr>
<tr>
<td>MOEA</td>
<td>Most popular multiobjective evolutionary algorithms</td>
</tr>
<tr>
<td>MOO</td>
<td>Multi-Objective Optimal</td>
</tr>
<tr>
<td>MOPSO</td>
<td>Multi-objective particle swarm optimisation</td>
</tr>
<tr>
<td>MOUSE</td>
<td>Model of Urban Sewers</td>
</tr>
<tr>
<td>MUSIC</td>
<td>Model for Urban Stormwater Improvement Conceptualization</td>
</tr>
<tr>
<td>NBS</td>
<td>Nature-Based Solutions</td>
</tr>
<tr>
<td>NSGA-II</td>
<td>Non-dominated Sorting Genetic Algorithm II</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle swarm optimisation</td>
</tr>
<tr>
<td>RECONECT</td>
<td>Regenerating ECOsystems with Nature-based solutions for hydro-meteorological risk rEduCTion</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on Investment</td>
</tr>
<tr>
<td>RPE</td>
<td>Relative Performance Evaluation</td>
</tr>
<tr>
<td>SA</td>
<td>Simulated Annealing</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SCP</td>
<td>Sponge City Programme</td>
</tr>
<tr>
<td>SDGs</td>
<td>Sustainable Development Goals</td>
</tr>
<tr>
<td>SEI</td>
<td>Stockholm Environment Institute</td>
</tr>
<tr>
<td>SFDRR</td>
<td>Sendai Framework for Disaster Risk reduction</td>
</tr>
<tr>
<td>SuDS</td>
<td>Sustainable Urban Drainage Systems</td>
</tr>
<tr>
<td>SUSTAIN</td>
<td>System for Urban Stormwater Treatment and Analysis IntegratioN</td>
</tr>
<tr>
<td>SWAT</td>
<td>Soil and Water Assessment</td>
</tr>
<tr>
<td>SWIMM</td>
<td>Storm Water Management Model</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
</tbody>
</table>
References

Chen, J., Brissette, F. P., Chaumont, D. and Braun, M.: Finding appropriate bias correction methods in downscaling

Cohen-Shacham, E., Walters, G., Janzen, C. and Maginnis, C.: Nature-based solutions to address global societal challenges, IUCN Commission on Ecosystem Management (CEM) and IUCN World Commission on Protected Areas (WCPA), Switzerland., 2016.

County, P. G.: Low-Impact Development Design Strategies - An Integrated Design Approach, Department of Environmental Resources, Programs and Planning Division, Prince George’s County, Maryland., 1999.

Faivre, N., Sgobbi, A., Happaerts, S., Raynal, J. and Schmidt, L.: Translating the Sendai Framework into action: The EU

Huang, J. J., Li, Y., Niu, S. and Zhou, S. H.: Assessing the performances of low impact development alternatives by long-term

Liu, L. and Jensen, M. B.: Green infrastructure for sustainable urban water management: Practices of five forerunner cities,

Oppla: Natural capital • Ecosystem services • Nature-based solutions | Oppla, [online] Available from: https://oppla.eu/

Figure 1: Number of articles per year on Nature Based Solutions for hydro-meteorological risk reduction sourced from Scopus over the period 1983-2018.
Figure 2: Process of article selection on Nature Based Solutions for hydro-meteorological risk reduction. The process started with sorting 1381 articles and 31 other documents. The final number of fully reviewed articles is 159.

Figure 3: Timeline/year of origin of each terminology (Low Impact Developments (LIDs), Best Management Practices (BMPs), Water Sensitive Urban Design (WSUD), Green Infrastructure (GI), Sustainable Urban Drainage Systems (SuDS), Nature-Based Solutions (NBS), Ecosystem-based Adaptation (EbA), Ecosystem-based Disaster Risk Reduction (Eco-DRR) and Blue-Green Infrastructure (BGI)) based on their appearance in publications.
Figure 2: Process of article selection on Nature Based Solutions for hydro-meteorological risk reduction. The final number of fully reviewed articles is 137.
Figure 5.3: Illustration of large and small scale Nature-Based-Solutions (NBS); Large-scale NBS A illustrates NBS in mountainous regions (e.g., afforestation, reforestation, slope stabilization, etc.), Large-scale NBS B illustrates NBS along river corridors (e.g., dike relocation, retention basins, etc.) and Large-scale NBS C illustrates NBS in coastal regions (e.g., sand dunes, protection dikes/walls, marshes, etc.); Typical examples of Small-scale NBS are green roofs, green walls, rain gardens, porous/permeable pavements, swales, bio-retention, etc.

Figure 6.4: Evaluation process of Nature-Based Solutions
Figure 45: An overview of published articles on Nature-Based Solutions for hydro-meteorological risk reduction: (a) percentage of published articles that have been studied for reducing urban flooding, coastal flooding, river flooding, droughts and landslides and (b) number/trend of published articles for Low Impact Developments (LIDs), Best Management Practices (BMPs), Water Sensitive Urban Design (WSUD), Green Infrastructure (GI), Sustainable Urban Drainage Systems (SuDS), Nature-Based Solutions (NBS), Ecosystem-based Adaptation (EbA), Ecosystem-based Disaster Risk Reduction (Eco-DRR) and Blue-Green Infrastructure (BGI).

Table 21: Glossary of terminologies and their geographical usage

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Definition/Objectives/Purpose</th>
<th>Commonly used in</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Impact Development (LIDs)</td>
<td>“LID is used as a retro-fit designed to reduce the stress on urban stormwater infrastructure and/or create the resiliency to adapt to climate changes. LID relies heavily on infiltration and evapotranspiration and attempts to incorporate natural features into design.”</td>
<td>- United States - New Zealand</td>
<td>(Barlow et al., 1977; County, 1999; Eckart et al., 2017)</td>
</tr>
<tr>
<td>Best management practices (BMPs)</td>
<td>“A device, practice or method for removing, reducing, retarding or preventing targeted stormwater runoff constituents, pollutants and contaminants from reaching receiving waters”</td>
<td>- United States - Canada</td>
<td>(Biggers et al., 1980; Moura et al., 2016; Strecker et al., 2001)</td>
</tr>
<tr>
<td>Water Sensitive Urban Design (WSUD)</td>
<td>“Manage the water balance, maintain and where possible enhance water quality, encourage water conservation and maintain water-related environmental and recreational opportunities”.</td>
<td>- Australia</td>
<td>(Lottering et al., 2015; Mouritz, 1996; Whelans consultants et al., 1994)</td>
</tr>
<tr>
<td>Sustainable Urban Drainage Systems (SuDS)</td>
<td>“Replicate the natural drainage processes of an area—typically through the use of vegetation-based interventions such as swales, water gardens and green roofs, which increase localised infiltration, attenuation and/or detention of stormwater”</td>
<td>- United Kingdom</td>
<td>(Abbott and Comino-Mateos, 2001; Ossa-Moreno et al., 2017)</td>
</tr>
</tbody>
</table>
Green Infrastructure (GI)
“The network of natural and semi-natural areas, features and green spaces in rural and urban, and terrestrial, freshwater, coastal and marine areas, which together enhance ecosystem health and resilience, contribute to biodiversity conservation and benefit human populations through the maintenance and enhancement of ecosystem services”
- United states
- United Kingdom
(Gill et al., 2007; Lafortezza et al., 2013; Naumann et al., 2011; Walmsley, 1995)

Ecosystem-based Adaptation (EbA)
“The use of biodiversity and ecosystem services as part of an overall adaptation strategy to help people to adapt to the adverse effects of climate change.”
- Canada
- Europe
(CBD, 2009; McVittie et al., 2017; Scarano, 2017)

Ecosystem-based disaster risk reduction (Eco-DDR)
“The sustainable management, conservation, and restoration of ecosystems to reduce disaster risk, with the aim of achieving sustainable and resilient development”
- Europe
- United states
(Estrella and Saalismaa, 2013; PEDRR, 2010; Renaud et al., 2016)

Blue-Green Infrastructure (BGI)
“BGI provides a range of services that include; water supply, climate regulation, pollution control and hazard regulation (blue services/goods), crops, food and timber, wild species diversity, detoxification, cultural services (physical health, aesthetics, spiritual), plus abilities to adapt to and mitigate climate change”
- United Kingdom
(Bozovic et al., 2017; Lawson et al., 2014; PEDRR, 2010; Rozos et al., 2013)

Nature-Based Solution
“NBS aim to help societies address a variety of environmental, social and economic challenges in sustainable ways. They are actions inspired by, supported by or copied from nature; both using and enhancing existing solutions to challenges, as well as exploring more novel solutions.”
- Europe
(Cohen-Shacham et al., 2016; European Commission (EC), 2015; Faivre et al., 2017; MacKinnon et al., 2008; Stürck et al., 2015)

Table 2: Selected concepts and terms used to search relevant literature on NBS for hydro-meteorological risk reduction

<table>
<thead>
<tr>
<th>No</th>
<th>First concept (Nature-Based Solutions)</th>
<th>Connection</th>
<th>Second concept (Hydro-meteorological risk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>“Nature-based solutions” OR</td>
<td>AND</td>
<td>“Flood”</td>
</tr>
<tr>
<td>2</td>
<td>“Nature-Based Solutions” OR</td>
<td>AND</td>
<td>“Drought”</td>
</tr>
<tr>
<td>3</td>
<td>“Low impact development” OR</td>
<td>AND</td>
<td>“Storm surge”</td>
</tr>
<tr>
<td>4</td>
<td>“Sustainable Urban Drainage Systems” OR</td>
<td>AND</td>
<td>“Landslide”</td>
</tr>
<tr>
<td>5</td>
<td>“Water Sensitive Urban Design” OR</td>
<td>AND</td>
<td>“Hydro-meteorological”</td>
</tr>
<tr>
<td>6</td>
<td>“Best Management Practices” OR</td>
<td>AND</td>
<td>“Disaster”</td>
</tr>
<tr>
<td>7</td>
<td>“Green infrastructure” OR</td>
<td>AND</td>
<td>“Review”</td>
</tr>
<tr>
<td>8</td>
<td>“Green blue infrastructure” OR</td>
<td>AND</td>
<td>“Hydrology”</td>
</tr>
<tr>
<td>9</td>
<td>“Ecosystem-based Adaptation ” OR</td>
<td>AND</td>
<td>“Coastal”</td>
</tr>
<tr>
<td>10</td>
<td>“Ecosystem-based disaster risk reduction ”</td>
<td>AND</td>
<td>“Coastal”</td>
</tr>
</tbody>
</table>

Table 3: Summary of effectiveness, co-benefits and costs of small scale NBS measures
<table>
<thead>
<tr>
<th>Measures</th>
<th>References</th>
<th>Case studies</th>
<th>Area/ volume covered by NBS</th>
<th>Effectiveness</th>
<th>Co-benefits</th>
<th>Cost/ m²*</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous pavement</td>
<td>Shafique et al., (2018)</td>
<td>Seoul, Korea</td>
<td>1050 m²</td>
<td>~30–65%</td>
<td>• Removing diffuse pollution</td>
<td>~$252</td>
<td>• More effective in heavier and shorter rainfall events.</td>
</tr>
<tr>
<td></td>
<td>Damodaram et al., 2010</td>
<td>Texas, USA</td>
<td>2.99 km²</td>
<td>~10% – 30%</td>
<td>• Enhancing recharge to groundwater</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green roofs</td>
<td>(Burszta-Adamiak and Mrowiec, 2013)</td>
<td>Wrocław, Poland</td>
<td>2.88 m²</td>
<td>~54%-96%</td>
<td>• Reducing nutrient loadings.</td>
<td>~$564</td>
<td>• More efficient in smaller storm events than larger storm events.</td>
</tr>
<tr>
<td></td>
<td>(Ercolani et al., 2018)</td>
<td>Milan, Italy</td>
<td>0.39 km²</td>
<td>~15%-70%</td>
<td>• Saving energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Carpenter and Kaluvakolanu, 2011)</td>
<td>Michigan, USA</td>
<td>325.2 m²</td>
<td>~68.25%</td>
<td>• Reducing air pollution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~88.6%</td>
<td>• Increasing amenity value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rain gardens</td>
<td>(Ishimatsu et al., 2017)</td>
<td>Japan</td>
<td>1.862 m²</td>
<td>~36-100%</td>
<td>• Providing a scenic amenity</td>
<td>~$501</td>
<td>• More effective in dealing with small discharges of rainwater</td>
</tr>
<tr>
<td></td>
<td>(Goncalves et al., 2018)</td>
<td>Joinville, Brazil</td>
<td>34.139 m²</td>
<td>50%</td>
<td>• Increasing the median property value</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.5%</td>
<td>• Increasing biodiversity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetated swales</td>
<td>(Luan et al., 2017)</td>
<td>Beijing, China</td>
<td>157 m²</td>
<td>~0.3–3.0%</td>
<td>• Reducing concentrations of pollutants</td>
<td>~$371</td>
<td>• More effective in heavier and shorter rainfall events.</td>
</tr>
<tr>
<td></td>
<td>(Huang et al., 2014)</td>
<td>Haihe River basin, China</td>
<td>1,500 m³</td>
<td>9.60%</td>
<td>• Increasing biodiversity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23.56%</td>
<td>• Providing biodiversity benefits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainwater harvesting</td>
<td>(Khashtagir and Jayasuriya, 2010)</td>
<td>Melbourne, Australia</td>
<td>1 m³–5 m³</td>
<td>~57.8%–78.7%</td>
<td>• Improving water quality (TN was reduced around 72%-80%)</td>
<td>~$865/m³</td>
<td>• More effective in heavier and shorter rainfall events.</td>
</tr>
<tr>
<td></td>
<td>(Damodaram et al., 2010)</td>
<td>Texas, USA</td>
<td>1.5 km³</td>
<td>~8%-10%</td>
<td>• Delaying the time to peak by 40–45 min</td>
<td>~$60</td>
<td></td>
</tr>
<tr>
<td>Dry detention pond</td>
<td>(Liew et al., 2012)</td>
<td>Selangor, Malaysia</td>
<td>65,000 m²</td>
<td>~33-46%</td>
<td>• Providing recreational benefits</td>
<td></td>
<td>Delaying the time to peak by 40–45 min</td>
</tr>
<tr>
<td>Detention pond</td>
<td>(Damodaram et al., 2010)</td>
<td>Texas, USA</td>
<td>73,372 m³</td>
<td>~20%</td>
<td>• Providing biodiversity benefits</td>
<td>~$534</td>
<td>Measure has a better reduction effectiveness in various rainfall intensities.</td>
</tr>
<tr>
<td></td>
<td>(Goncalves et al., 2018)</td>
<td>Joinville, Brazil</td>
<td>9,700 m³</td>
<td>55.7%</td>
<td>• Providing recreational benefits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-retention</td>
<td>(Luan et al., 2017)</td>
<td>Beijing, China</td>
<td>945.93 m³</td>
<td>~10.2–12.1%</td>
<td>• Reducing TSS pollution</td>
<td>~$534</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Huang et al., 2014)</td>
<td>Haihe River basin, China</td>
<td>1,708.6 m³</td>
<td>9.10%</td>
<td>• Reducing TP pollution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Khan et al., 2013;</td>
<td>Calgary</td>
<td>48 m³</td>
<td>41.65%</td>
<td>• Measure has a better reduction effectiveness in various rainfall intensities.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~90%</td>
<td>• Reducing water pollutant</td>
<td>~$74</td>
<td></td>
</tr>
<tr>
<td>Infiltration trench</td>
<td>(Huang et al., 2014)</td>
<td>Haihe River, China</td>
<td>3,576 m³</td>
<td>30.80%</td>
<td>• Improving surface water quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measures</td>
<td>References</td>
<td>Case studies</td>
<td>Area/ volume covered by NBS</td>
<td>Effectiveness</td>
<td>Co-benefits</td>
<td>Cost/ m²*</td>
<td>Remark</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>---</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Green roof and Porous pavement</td>
<td>(Damodaram et al., 2010)</td>
<td>Texas, USA</td>
<td>4.49 km²</td>
<td>~10%~35%</td>
<td>Saving energy, Increasing amenity value</td>
<td></td>
<td>More effective in smaller events</td>
</tr>
<tr>
<td>Swale and Porous pavement</td>
<td>(Behroozi et al., 2018)</td>
<td>Tehran, Iran</td>
<td>~5%~32%</td>
<td>~10%~21%</td>
<td>Decreasing TSS pollution 50~60%</td>
<td></td>
<td>More effective in smaller events</td>
</tr>
<tr>
<td>Rainwater harvesting and Porous pavement</td>
<td>(Damodaram et al., 2010)</td>
<td>Texas, USA</td>
<td>4.49 km²</td>
<td>~20%~40%</td>
<td>Removing diffuse pollution</td>
<td></td>
<td>More effective in smaller events</td>
</tr>
<tr>
<td>Detention pond and Raingarden</td>
<td>(Goncalves et al., 2018)</td>
<td>Joinville, Brazil</td>
<td>18,327 m²</td>
<td>70.8%</td>
<td>Providing a scenic amenity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detention pond and Infiltration trench</td>
<td>(Goncalves et al., 2018)</td>
<td>Joinville, Brazil</td>
<td>18,327 m²</td>
<td>75.1%</td>
<td>Improving surface water quality</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Remark Cost of each measure is based on (CNT, 2009; Nordman et al., 2018; De Risi et al., 2018)
Table 4: Summary of effectiveness, co-benefits and costs of large scale NBS measures

<table>
<thead>
<tr>
<th>Measures</th>
<th>References</th>
<th>Case studies</th>
<th>Area/ volume covered by NBS</th>
<th>Effectiveness</th>
<th>Co-benefits</th>
<th>Cost/ Unit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>De-culverting (river restoration)</td>
<td>(Chou, 2016)</td>
<td>Laojie River, Taiwan</td>
<td>3 km</td>
<td>• It can reduce flood risk up to 100 year return period</td>
<td>• Increasing landscape value</td>
<td>~$18.6 million</td>
</tr>
<tr>
<td>Floodplain lowering</td>
<td>(Klijn et al., 2013).</td>
<td>Deventer Netherlands</td>
<td>5.01 km²</td>
<td>• It can reduce water level 19 cm</td>
<td>• Increasing nature area</td>
<td>~€136.7 million</td>
</tr>
<tr>
<td>Dike relocation/floodplain lowering</td>
<td>(Klijn et al., 2013).</td>
<td>Nijmegen/ Lent, Netherlands</td>
<td>2.42 km²</td>
<td>• It can reduce water level 34 cm</td>
<td>• Increasing floodplain area</td>
<td>~€342.60 million</td>
</tr>
<tr>
<td>Floodwater storage</td>
<td>(Klijn et al., 2013).</td>
<td>Volkenrak-Zoommeer</td>
<td>200 million m³</td>
<td>• It can reduce water level 50 cm</td>
<td>• Increasing habitat and biodiversity in the area</td>
<td>~€386.20 million</td>
</tr>
<tr>
<td>Green floodway</td>
<td>(Klijn et al., 2013).</td>
<td>Veessen-Wapenveld</td>
<td>14.10 km²</td>
<td>• It can reduce water level 71 cm</td>
<td>• Increasing floodplain area</td>
<td></td>
</tr>
<tr>
<td>Wetlands (Mangroves and salt Marshes)</td>
<td>(Coppenolle, 2018; Gedan et al., 2011)</td>
<td></td>
<td></td>
<td>• It can mitigate storm surge 80%</td>
<td>• It can protect against tsunami impacts</td>
<td></td>
</tr>
</tbody>
</table>

Table 45: An overview of web-portals, networks and initiatives that address Nature-Based Solutions

<table>
<thead>
<tr>
<th>Name</th>
<th>References/ Website</th>
<th>Terminology used</th>
<th>Scale level</th>
<th>Funded by</th>
<th>Proposes</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPPLA</td>
<td>(Oppla, 2019)</td>
<td>Nature-Based Solution, Natural capital, Ecosystem services</td>
<td>Europe</td>
<td>FP7 (EC)</td>
<td>A new knowledge marketplace - EU repository of NBS; a place where the latest thinking on ecosystem services, natural capital and nature-based solutions is brought together.</td>
</tr>
<tr>
<td>BiodivERsA</td>
<td>(Biodivera, 2019)</td>
<td>Ecosystem services</td>
<td>Europe</td>
<td>Horizon 2020 (EC)</td>
<td>A network of funding organizations promoting research on biodiversity and ecosystem services.</td>
</tr>
<tr>
<td>BISE</td>
<td>(BISE, 2019)</td>
<td>Ecosystem services, Green infrastructures</td>
<td>Europe</td>
<td>EC</td>
<td>A single entry point for data and information on biodiversity supporting the implementation of the EU strategy and the Aichi targets in Europe.</td>
</tr>
<tr>
<td>ClimateADAPT</td>
<td>(Climate ADAPT, 2019)</td>
<td>EbA, Based Solution, Nature- Solution, GI</td>
<td>Europe</td>
<td>EC, EEA</td>
<td>A platform that supports Europe in adapting to climate change by helping users to access and share data and information relevant for CCIVA.</td>
</tr>
<tr>
<td>Natural Water Retention Measures</td>
<td>(NWRM, 2019)</td>
<td>Natural water retention measures</td>
<td>Europe</td>
<td>EC</td>
<td>A platform that gathers information on NWRM at EU level.</td>
</tr>
<tr>
<td>Disaster Risk Management</td>
<td>(DRMKC, 2019)</td>
<td>Eco-DRR</td>
<td>Europe</td>
<td>EC</td>
<td>A platform that provides a networked approach to the science-policy interface in DRM.</td>
</tr>
<tr>
<td>Name</td>
<td>References/Website</td>
<td>Terminology used</td>
<td>Scale level</td>
<td>Funded by</td>
<td>Proposes</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Knowledge Centre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Hazards – Nature Based Solutions</td>
<td>(World Bank et al., 2019)</td>
<td>Nature-Based Solution</td>
<td>Global</td>
<td>The World Bank</td>
<td>A project map that provides a list of nature-based projects that are sortable by implementing organisation, targeted hazard, and type of nature-based solution, geographic location, cost, benefits, and more.</td>
</tr>
<tr>
<td>weADAPT</td>
<td>(SEI, 2019)</td>
<td>Ecosystem-based Adaptation</td>
<td>Global</td>
<td>Stockholm Environment Institute (SEI)</td>
<td>A collaborative platform on climate adaptation issues, which allows practitioners, researchers and policy-makers to access credible, high-quality information and connect.</td>
</tr>
<tr>
<td>ClimateScan</td>
<td>(ClimateScan, 2019)</td>
<td>Blue-Green Infrastructures</td>
<td>Global</td>
<td>EC</td>
<td>Global online tool which acts as a guide for projects and initiatives on urban resilience, climate proofing and climate adaptation around the world.</td>
</tr>
<tr>
<td>Partnership for Environment and Disaster Risk Reduction (PEDRR)</td>
<td>(PEDRR, 2019)</td>
<td>Ecosystem-based Adaptation</td>
<td>Global</td>
<td></td>
<td>PEDRR aims to promote and scale-up implementation of Eco-DRR and ensure it is mainstreamed in development planning at global, national and local levels, in line with the SFDRR.</td>
</tr>
<tr>
<td>PANORAMA</td>
<td>(PANORAMA, 2019)</td>
<td>Ecosystem-based Adaptation</td>
<td>Global</td>
<td>IUCN, GIZ, UNDP</td>
<td>It aims to document and promote examples of inspiring solutions across development topics, to enable cross-sectoral learning and upscaling of successes</td>
</tr>
</tbody>
</table>

Table 36: Overview of knowledge gaps and potential future research prospects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Number of publications</th>
<th>Knowledge Gaps</th>
<th>Future research prospects</th>
</tr>
</thead>
</table>
| 1. The effectiveness of small scale NBS | 45 | - Combination of small and large scale NBS with grey infrastructure. | • Development of a framework and methods to upscale NBS from small to large scale.
• Development of a framework, methods and tools to select, evaluate, and design hybrid measures for hydro-meteorological risk reduction |
| | | - NBS for droughts, landslides and storm surges. | • Application of NBS to reduce the risk of droughts, landslides and storm surges. |
| 2. The effectiveness of large scale NBS | 13 | - Application to hydro-meteorological risk reduction; | • Development of a framework, methods and tools to select, evaluate, and design large scale NBS individually and in hybrid combinations for hydro-meteorological risk reduction
• Development of typologies and guidelines for NBS design, implementation, operation and maintenance. |
<table>
<thead>
<tr>
<th>Subject</th>
<th>Number of publications</th>
<th>Knowledge Gaps</th>
<th>Future research prospects</th>
</tr>
</thead>
</table>
| 3. Selection and assessment of NBS with the focus on risk reduction | 29 | Framework for selection of NBS | • Defining the role of ecosystems in terms of risk reduction, socio-economic and hydro-geomorphological settings
• Combining spatial planning and stakeholders participation in the co-selection process
Framework for cost analysis | • Combining economic value of ecological damage and environmental impact, including the “invisible” ecosystem services (see also Estrella et al., 2013)
• Application of the whole life cycle costing and return on investment within the cost-benefit analysis of NBS
• Comparing costs and benefits between NBS, GI and hybrid measures
• Defining opportunity costs and trade-offs of NBS implementation
Framework for optimal configuration of NBS | • Use of optimisation techniques to maximise the main benefit and co-benefits of NBS while minimising their costs.
• Use of optimisation techniques to maximise the efficiency of NBS and to define their best configurations within hybrid solutions.
• Assessing the effectiveness of solutions on short and long terms
Combination between multi-criteria and qualitative research | • Use of multi-criteria and qualitative research in evaluation of NBS.
• How to combine quantitative and qualitative data and research methods.
• Application of qualitative research methods and interviews to effectiveness of NBS
• Development of a framework, methods and tools to evaluate wide ranging intangible and tangible benefits.
• Gaining deeper understanding of NBS benefits for human well-being
Assessment of ecosystem capacity | • Assessing ecosystem capacity to maintain services over a longer period of time (see Estrella and Saalismaa, 2013)
• Long–term monitoring and evaluation of ecosystem performance and function before and after the disaster
• Addressing the complexity of coupled social and ecological systems |

Table 3: Overview of knowledge gaps and potential future research prospects (continue)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Number of publications</th>
<th>Knowledge Gaps</th>
<th>Future research prospects</th>
</tr>
</thead>
</table>
| 5. Application | 19 | Application of new technologies and concepts (e.g., high resolutions numerical | • Integration of real-time monitoring and control technologies for NBS operation.
• A trade-off between high resolution numerical models and accuracy of results. |
<table>
<thead>
<tr>
<th>of tools</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>models, complex,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crowdsourcing tools,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>real-time control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>system)</td>
<td>• Use of novel modelling</td>
<td>• Development of databases of</td>
<td>• Desirable finance models (e.g.,</td>
</tr>
<tr>
<td></td>
<td>techniques such as</td>
<td>small and large scale NBS for</td>
<td>public-private partnerships,</td>
</tr>
<tr>
<td></td>
<td>complex adaptive systems</td>
<td>hydro-meteorological risk</td>
<td>blended financing, etc.)</td>
</tr>
<tr>
<td></td>
<td>models and serious</td>
<td>reduction.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>games.</td>
<td>• Development of platforms,</td>
<td>• Development of finance guidance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>info-systems and clusters for</td>
<td>for implementing maintaining and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>exchange knowledge (see also</td>
<td>operating NBS projects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kabisch et al., 2016).</td>
<td>• Guidelines concerning development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Development of tools to</td>
<td>of new business and finance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>support decision makers in</td>
<td>models (see also Kabisch et al., 2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selecting and evaluating</td>
<td>• Development of financial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hybrid measures.</td>
<td>mechanisms to engage public and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Development of tools to</td>
<td>private sectors in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>assess the multiple-benefits</td>
<td>implementation of NBS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for small and large scale</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NBS and their hybrid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>combinations.</td>
<td></td>
</tr>
<tr>
<td>Web-based decision</td>
<td></td>
<td>• Development of a framework</td>
<td>• Bridging gaps between</td>
</tr>
<tr>
<td>support tools/systems</td>
<td></td>
<td>and methods to support</td>
<td>researchers, engineers,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>multifunctional design.</td>
<td>authorities and local</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Application of novel</td>
<td>stakeholders.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>landscape design techniques.</td>
<td>• Bridging the policy and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Combining the knowledge from</td>
<td>institutional gaps.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>landscape architecture and</td>
<td>• Bringing innovation to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>water engineering (Kabisch et</td>
<td>engage society in implementing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>al., 2016).</td>
<td>and improving NBS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Frameworks for involvement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of stakeholders in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>selection, evaluation,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>design, implementation, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>monitoring of NBS (i.e., the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>so-called co-creation process).</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Framework for</td>
<td>• Information concerning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>multifunctional design</td>
<td>legal instruments and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>requirements.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Development of effective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>governance structures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Compilation of data and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>information concerning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>multiple actors and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>institutions which are</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>relevant for implementation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of NBS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Understanding water</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>governance structures,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>drivers, barriers and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mechanism for enabling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>system transformation (see</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>also Albert et al., 2019).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Development of methods for</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>evaluation of social, political</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and institutional dimensions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of NBS (see also Triyanti and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chu, 2018)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Frameworks for</td>
<td>• Development of finance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>effective stakeholder</td>
<td>guidance for implementing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>involvement and co-creation</td>
<td>maintenance and operating</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NBS projects.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Guidelines concerning</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>development of new business</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and finance models (see also</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kabisch et al., 2016).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Development of financial</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mechanisms to engage public</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and private sectors in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>implementation of NBS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bridging gaps between</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>science-practice-policy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bridging researchers,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>engineers, authorities and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>local stakeholders.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bridging the policy and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>institutional gaps.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bringing innovation to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>engage society in implementing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and improving NBS.</td>
<td></td>
</tr>
</tbody>
</table>