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Abstract. In the Yellow River basin, soil erosion is a significant natural hazard problem, seriously 10 
hindering the sustainable development of society. An in-depth assessment of soil erosion and a 11 
quantitative identification of the influencing factors are important and fundamental for soil and water 12 
conservation. The RUSLE model and geographical detector method were applied to evaluate and identify 13 
the dominant factors and spatiotemporal variability in the Yellow River basin. We found that 14 
topographical factors such as slope and surface roughness were the dominant factors influencing the 15 
spatial distribution of soil erosion in the Yellow River basin, rainfall and vegetation were as follows. In 16 
the period of low rainfall and vegetation coverage, the interaction of rainfall and slope can enhance their 17 
impact on the distribution of soil erosion, the combination of vegetation and slope was the dominant 18 
interacting factor in other periods. The dominant driving factors of soil erosion variability were affected 19 
by changes in rainfall, but the contribution decreased. The spatial and temporal heterogeneity of soil 20 
erosion on a monthly scale was higher, and July had the highest amount of soil erosion with a multi-year 21 
average of 1238.5 ton/(km²·a). The results provide a better understanding of the relationships between 22 
soil erosion and its latent factors in the Yellow River basin. Given the temporal and spatial heterogeneity 23 
effects of geographical conditions, especially at the basin scale, policy-makers should form a 24 
collaborative environmental governance framework to minimize the risk of soil erosion. 25 

1 Introduction 26 

Soil erosion has the potential to change soil structure and negatively affects soil fertility, land 27 

productivity, food security, biological diversity and the global carbon (C) cycle; additionally, soil erosion 28 

is likely the most dangerous form of soil degradation worldwide (Amundson et al., 2015; Van Oost et 29 

al., 2012; Alexandridis et al., 2015; Keesstra et al 2016; Lal, R., 2004). It is a global environmental and 30 

ecological issue that seriously hinders the sustainable development of society (Borrelli et al., 2017; 31 

Martinez-Casasnovas et al., 2016; Kefi et al., 2011). On the one hand, soil erosion is closely related to 32 

agricultural production. By removing the most fertile topsoil, soil erosion reduces soil productivity and, 33 
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where soils are shallow, may cause irreversible loss of natural cultivated land (Sabbi and Salvati, 2014). 34 

On the other hand, soil erosion rate is very sensitive to climate, land-use and conservation practices at 35 

farm level. In sum, the assessment of soil erosion and the identification of soil erosion impact factors are 36 

essential. Although a large number of soil erosion assessments have been carried out on different spatial 37 

scales, the relationships between environmental factors and soil erosion are not consistent among various 38 

research conditions. How to quantify the effect of environmental factors on the distribution and 39 

variability of soil erosion, especially considering the interaction of environmental factors, is still a 40 

question that must be answered by conducting multiple analyses of regions that experience high soil 41 

erosion. 42 

The identification of the mechanisms of soil erosion and factors affecting soil erosion is an 43 

important basis for land use management and ecosystem government. Several studies have focused on 44 

determining the driving forces affecting soil erosion, including precipitation, geomorphology, land use 45 

type, vegetation, and soil physical properties (Vrieling, 2006; Zhou et al., 2008; Peng and Wang, 2012; 46 

Gao and Wang., 2018; Beskow et al., 2009; Tian et al., 2009). Climate factors such as precipitation, 47 

temperature and evaporation, all affect regional soil erosion. Among them, rainfall is the driving force 48 

of soil erosion and one of the most important factors affecting erosion. From the time of rainfall exposure 49 

to the land surface, the process of splashing and spurting by raindrops has a significant impact on soil 50 

erosion. Terrain is one of the important natural geomorphic factors affecting soil erosion, and it is one of 51 

the lower interface factors affecting the formation and development of soil erosion. Different 52 

characteristics of topography and their changing tendency correspond to different features of slope runoff 53 

and confluence, which affect the occurrence and intensity of soil erosion directly (Yang et al., 2007). 54 

Among them, the influence of slope on soil erosion is finally reflected by the runoff of the slope and their 55 

flow velocity, which is an important factor restricting the spatial distribution of productivity. For 56 

vegetation, the vegetation canopy can protect the surface soil from direct impact from raindrops and 57 

weaken runoff, thus eventually reducing soil erosion. Excessive land reclamation, unreasonable 58 

production activities and land use patterns, and the reductions in surface vegetation cover have a 59 

magnifying effect on soil erosion (Wu and Cai., 2003). 60 

The Yellow River, especially the middle reaches located on the Loess Plateau, is the region with 61 

the most serious soil erosion caused by water in the world (Liu and Liu, 2010; Sun et al., 2014). The 62 
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Chinese Government has undertaken numerous soil conservation projects in the Yellow River, especially 63 

the Grain-for-Green Program that started in 1998, which has greatly improved the ecological and 64 

environmental quality in this region and is expected to influence soil erosion (Gao et al., 2011; Fu et al., 65 

2011). The research of soil erosion in the Yellow River Basin has attracted the attention many scholars 66 

and their work mainly focused on the assessment of soil erosion and the identification of impact factors. 67 

For example, Sun et al. (2013; 2014) explored the effects of rainfall, vegetation cover, land cover and 68 

topography on soil erosion risk in the Loess Plateau. Zhao et al. (2018) identified the risk of soil erosion 69 

in the middle reaches of the Yellow River from 1978 to 2010 dynamically. Du et al. (2016) assessed the 70 

risk caused by water and wind in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River. 71 

Previous studies have primarily been concerned with the identification and quantification of single 72 

factors; however, research on the effects of multi-factor interactions on soil erosion is insufficient. The 73 

variation in precipitation will influence the soil water content, further influence the development of 74 

vegetation, and eventually decrease or accelerate erosion (Hou et al., 1996). In addition, the decreased 75 

rainfall reduces the rainfall erosivity and eventually lowers the amount of soil erosion, but it may also 76 

lower the density of vegetation cover due to insufficient water. Therefore, the relationships among 77 

precipitation, vegetation, topography and erosion are uncertain due to their complex interactions, and 78 

quantitative studies of their contributions and multiple interacting factors are important. These studies 79 

are important and necessary for policy-makers to develop soil and water protection measures. 80 

Large-scale soil erosion monitoring relies heavily on the development of models, and the Revised 81 

Universal Soil Loss Equation (RUSLE) is the most widely applied empirical erosion model based on the 82 

Universal Soil Loss Equation (USLE) (Wishmeier and Smith, 1978; Renard et al., 1997). Using the 83 

detailed surface information provided by remote sensing, the RUSLE model has successfully been 84 

applied to a variety of spatial scale assessments of soil erosion, from the plot scale to the global scale 85 

(Thiam, 2003; Vrieling, 2006; Van der kniff, 1999; Van der kniff, 2000; Borrelli et al., 2013). 86 

Specifically, for the RUSLE model, the soil erodibility (K factor) and topography (LS) factors are stable 87 

over a long time period and are relatively independent of anthropogenic interventions. However, the 88 

rainfall erodibility (R factor) and vegetation cover and management factor (C factor) are seasonally 89 

variable. The C factor is the most adjustable factor based on land use management (Durán Zuazo and 90 

Rodríguez Pleguezuelo, 2008; Maetens et al., 2012; Biddoccu et al., 2014; Eshel et al., 2015; Biddoccu 91 
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et al., 2016), with the highest amplitude of spatial and temporal variation among all the RUSLE factors 92 

(Estrada-Carmona et al., 2016). Similar to the C factor, the contribution of the R factor is also the 93 

amplitude of the spatial and temporal variation caused by the large variability in the monthly rainfall 94 

under the context of climate change. Because of seasonal changes in these environmental factors, the 95 

annual scales of soil erosion assessments often ignore more detailed fluctuations, and the effects of 96 

factors related to soil erosion must also have the same seasonal effects. Furthermore, the focus of soil 97 

and water conservation work is closely related to the seasonal fluctuation of soil erosion and its driving 98 

factors. Compared to existing annual scale studies, more detailed time-scale soil erosion assessments are 99 

urgently needed, which would help establish the effects and trends of various factors on soil erosion and 100 

develop soil and water conservation strategies based on seasonal fluctuations.  101 

The aim of this work is to study the dominant factors influencing soil erosion and temporal change 102 

in the Yellow River basin of China. The specific objectives include the following: (1) obtain the 103 

distribution and monthly variation of soil erosion in the Yellow River basin; (2) quantitatively identify 104 

the dominant factors affecting the distribution pattern and variability of soil erosion on a yearly and 105 

monthly scale. 106 

2 Data and methods 107 

2.1 Study area 108 

The study area is the Yellow River basin. The Yellow River has a total length of 5,464 km and a 109 

drainage area of 795,000 𝑘𝑘𝑘𝑘2, accounting for 8.28% of China’s land area (Figure 1). According to 110 

statistics from 1997, the population of the Yellow River basin was 1.07 × 108, accounting for 8.6% of 111 

the national population; additionally, the area of cultivated land in the Yellow River basin was 112 

1.26 × 107𝑘𝑘𝑘𝑘2 , accounting for 13.3% of the country’s cultivated land and making it an important 113 

agricultural development zone in China (Li et al., 2010). However, soil erosion in the Yellow River basin, 114 

especially in the middle reaches of the Loess Plateau, has become an important environmental problem 115 

that hinders local agricultural and socio-economic development (Li et al., 2010). Therefore, the soil and 116 

water conservation work in the Yellow River basin is of great significance to the sustainable development 117 

of the basin. 118 
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2.2 Data and processing 119 

2.2.1 The RUSLE model 120 

 The soil erosion was estimated by the RUSLE model (Renard et al., 1997), which was revised based 121 

on the USLE model (Wishmeier and Smith, 1978). This model has been used to simulate and assess soil 122 

erosion worldwide using GIS and remote sensing tools. The equation is as follows: 123 

𝐴𝐴 = 𝑅𝑅 × 𝐾𝐾 × 𝐿𝐿𝐿𝐿 × 𝐶𝐶 × 𝑃𝑃,              (1) 124 

where A is the soil erosion module, R is the rainfall erosivity factor, K is the soil erodibility factor, 125 

LS is the slope aspect factor, C is the land cover and management factor, and P is the conservation 126 

measure factor. 127 

The R factor was computed using a diurnal rainfall model based on the Kӧppen climatic zone. The 128 

Yellow River basin contains 6 Kӧppen climatic zones: BS (arid and steppe), BW (arid and steppe), Cf 129 

(warm temperate and fully humid), Cw (warm temperate and winter dry), Dw (snow and dry winter) and 130 

Df (snow and fully humid). The specific R factor formula is as follows: 131 

𝐸𝐸𝐸𝐸 = α𝑃𝑃𝛽𝛽 + 𝜀𝜀,                 (2) 132 

where 𝑃𝑃 is the daily rainfall data, and the values of α, 𝛽𝛽, and 𝜀𝜀 depend on the climate region. The 133 

parameters are shown in Table S2. Rainfall data from 1995 to 2015 were acquired from the National 134 

Meteorological Information Center (http://data.cma.cn/). A gridded rainfall erosivity dataset with a 135 

spatial resolution of 1000 m at monthly and yearly scales was interpolated using ANUSPLIN 4.2 136 

software (Hutchinson, 2001), with data from 240 meteorological stations in the Yellow River basin and 137 

its surrounding areas. 138 

We computed the soil erodibility (K factor) using the land erosion-productivity impact model (EPIC) 139 

developed by Williams et al. (1990) as follows: 140 

𝐾𝐾 = �0.2 + 0.3𝑒𝑒−0.0256𝑆𝑆𝑆𝑆𝑆𝑆�1−𝑆𝑆𝑆𝑆𝑆𝑆100�� � 𝑆𝑆𝑆𝑆𝑆𝑆
𝐶𝐶𝑆𝑆𝑆𝑆+𝑆𝑆𝑆𝑆𝑆𝑆

�
0.3
�1.0− 0.25𝐶𝐶

𝐶𝐶+𝑒𝑒3.72−2.95𝐶𝐶� �1.0− 0.7𝑆𝑆𝑆𝑆1
𝑆𝑆𝑆𝑆1+𝑒𝑒−5.51+22.9𝑆𝑆𝑆𝑆1

�, (3) 141 

where SAN is the percent sand content, SIL is the percent silt content, CLA is the percent clay content, 142 

C is the percent organic carbon content, and SN1 = 1 – SAN/100. 143 

http://data.cma.cn/


6 

 

 Factors L and S were calculated based on the interaction of topography and flow accumulation. 144 

Thus, the 90 m digital elevation model (DEM) dataset STRM3 DEM (http://srtm.csi.cgiar.org/) was used. 145 

For S, the formula of McCool et al. (1987) was selected for slopes below 10º, and the formula of Liu et 146 

al. (1994) was used for slopes above 10º. The specific formula is as follows: 147 

S = 10.8 × sinθ + 0.03 (θ < 5°),             (4) 148 

S = 16.8 × sinθ − 0.5 (5° ≤ θ < 10°),             (5) 149 

S = 21.9 × sinθ − 0.96 (10° ≤ θ),                           (6) 150 

where θ is the slope value. 151 

 The L factor was computed using the method developed by Liu et al. (2010), based on the 152 

expression in Foster and Wischmeier (1974). 153 

𝐿𝐿𝑖𝑖 = 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜
𝑚𝑚+1−𝜆𝜆𝑖𝑖𝑖𝑖

𝑚𝑚+1

(𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜−𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖−1)22.13𝑚𝑚
,                                                                            (7) 154 

m = �
0.2               𝜃𝜃 ≤ 0.5°
0.3  0.5° < 𝜃𝜃 ≤ 1.5°
0.4     1.5° < 𝜃𝜃 ≤ 3°
0.5                   𝜃𝜃 > 3°

 ,                                                                       (8) 155 

where 𝐿𝐿𝑖𝑖 is the L factor of the 𝑖𝑖-th grid, 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜 and 𝜆𝜆𝑖𝑖𝑖𝑖 are the slope lengths of the exit and entrance, 156 

respectively, and m is the slope length index. 157 

The C factor is defined as the ratio of soil loss under the given vegetation cover to that which would 158 

occur under continuously bare soil. The C factors were acquired from previous large-scale studies in 159 

Europe (Van der kniff,1999,2000), and the detailed equation is as follows: 160 

C = exp (−2(NDVI/(1− NDVI))),             (9) 161 

where the NDVI is the normalized difference vegetation index. The NDVI images were acquired by the 162 

Global Inventory Modelling and Mapping Studies (GIMMS) NDVI 3g V1.0, which has a 15-day spatial 163 

resolution of 1/12 degrees that is available globally (https://ecocast.arc.nasa.gov/data/pub/gimms/3 164 

g.v1/). Using the maximum value composite (MVC) method, we generated monthly NDVI data based 165 

on two corresponding 15-day datasets and used the average of the generated monthly NDVI dataset to 166 

obtain the annual NDVI dataset. P is the support practice factoer. Due to the lack of data and the spatial 167 

resolution of the research, this value was set to 1. 168 

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
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The Climate Change Initiative land cover (CCI LC) project developed by the European Space 169 

Agency with a spatial resolution of 300 m was also used in this study. The temporal frame of analysis 170 

included 20 years from 1995 to 2015, with particular attention to the five temporal nodes of 1995, 2000, 171 

2005, 2010 and 2015. 172 

2.2.2 Geographical detector 173 

 The geographical detector is a spatial variance analysis method developed to detect the 174 

heterogeneity of an event and assess the relationship between the event and its potential risk factors, 175 

including environmental and anthropogenic factors (Wang et al., 2010). The core idea is based on the 176 

assumption that if an independent variable X has an important influence on a dependent variable Y, then 177 

the spatial distributions of the independent variable X should have similarities (Wang et al., 2012, Wang 178 

et al., 2017). The proportion of the spatial distribution of dependent variable Y that can be explained by 179 

independent variable X is measured by the power of determinant (q value). The calculation is as follows: 180 

𝑞𝑞 = 1− 1
𝑆𝑆𝜎𝜎2

∑ 𝑁𝑁𝑍𝑍𝜎𝜎𝑍𝑍2𝑆𝑆
𝑍𝑍=1 ,                                                       (10) 181 

𝜎𝜎𝑧𝑧2 = 1
𝑆𝑆𝑧𝑧−1

∑ �𝑌𝑌𝑧𝑧,𝑖𝑖 − 𝑌𝑌𝑍𝑍�
2𝑆𝑆𝑧𝑧

𝑖𝑖=1 ,                                                     (11) 182 

 𝜎𝜎𝑧𝑧2 = 1
𝑆𝑆−1

∑ �𝑌𝑌𝑗𝑗 − 𝑌𝑌�
2𝑆𝑆

𝑗𝑗=1 ,                                                      (12) 183 

where 𝜎𝜎2 is the variance of 𝑌𝑌 in the region, 𝜎𝜎2 is the variance in zone Z divided by 𝑋𝑋, N is the number 184 

of sample units in the region, 𝑁𝑁𝑍𝑍 is the number of sample units in zone Z, and L is the number of 185 

zones. 𝑌𝑌𝑧𝑧,𝑖𝑖and 𝑌𝑌𝑗𝑗  are the values of Y in the i-th sample units of zone Z and the j-th sample unit of the 186 

entire region, respectively. 187 

Two modules provided by a geographical detector, a factor detector module and an interaction 188 

detector module are used in this study. The factor detector module probes the extent to which factor X 189 

(independent variable) explains the spatial differentiation of attribute Y (dependent variable), and the q 190 

value of the interaction between two influencing factors was calculated using the interaction detector 191 

module. The input dataset (independent variable X) that a geographical detector requires must be 192 

discretized, such as a land use dataset and a continuous value dataset, such as a rainfall and slope dataset, 193 

must be discretely processed by a certain method. Because geographical detector is not mandatory for 194 

which classification method to use and we referred to the work of predecessors, we divided the rainfall, 195 

slope and NDVI into nine sections using the natural break method in this study (Wang et al., 2017; Gao 196 
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and Wang., 2018). The land use dataset (CCI LC) was reclassified into nine categories based on the 197 

classification scheme of Table S1. We selected 816 randomly distributed sample points with a spatial 198 

separation of at least 15 km as statistical units for model input, and the distribution of sample points is 199 

listed in Figure S1. Specifically, the reclassified values of environmental factors such as NDVI at 816 200 

random points are used as independent variable X, and the corresponding amount of soil erosion (which 201 

does not require reclassification processing) is taken as the dependent variable Y. The above data is used 202 

as data input for the two modules (factor detector module and an interaction detector module) of the 203 

geographical detector. We conducted a geographical detector method with ArcGIS 10.5 and the R 204 

package “geodetector” (https://cran.r-roject.org/web/packages/geodetector/index.html). 205 

3 Results. 206 

3.1 Distribution and monthly variation of soil erosion 207 

 The soil erosion in the Yellow River basin in 2015 showed a high degree of spatial heterogeneity. 208 

The areas with large amounts of soil erosion were mainly concentrated in the middle reaches of the 209 

Yellow River. In Inner Mongolia, Shandong, southwestern Shaanxi, northern Ningxia and western Gansu, 210 

the amount of soil erosion was small. There is a large risk of soil erosion in the eastern part of Qinghai, 211 

southern Gansu, southern Ningxia and north-western Shaanxi, which is caused by pressures from soil 212 

and water conservation. From the perspective of the basin, the middle reaches of the Yellow River, 213 

such as the Weihe River, face a high risk of soil erosion. Although the soil erosion intensity in the lower 214 

reaches of the Yellow River is not high, the sediment caused by the erosion of the middle reaches of the 215 

Yellow River causes sedimentation in the downstream riverbed, which further affects the atrophy and 216 

uplift of the riverbed in the downstream area. The lower reaches of the Yellow River also face problems, 217 

such as river channel siltation, reservoir lake siltation, and river bank erosion. Due to the thin soil layer 218 

and the exposed rock in the area of Qinghai, although the current soil erosion intensity is low, the area 219 

faces the potential danger of high soil erosion. 220 

Figure 3 illustrates the boxplot of soil erosion and its scatter distribution for each month from 1995 221 

to 2015. The amount of monthly soil erosion was significantly different from 1995 to 2015. The overall 222 

numerical distribution showed a more pronounced symmetrical shape: the middle months were high, and 223 

the values at the beginning and end of the year were lower. Specifically, soil erosion reached its highest 224 
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level in July with a multi-year average of 1238.5 ton/(km²·a). The average monthly soil erosion in the 225 

first and fourth quarters was relatively low, at 200.6 ton/(km²·a) and 333.2 ton/(km²·a), respectively. 226 

Compared with March, the multi-phase soil erosion in April increased by 115.79%. There was also a 227 

large drop in November compared with that in October, with a decline of 57.81%. Furthermore, the soil 228 

erosion was extremely low in January and December, with multi-phase averages of 83.3 ton/(km²·a) and 229 

52.6 ton/(km²·a), respectively. However, the median amount of multi-phase soil erosion in May was 230 

higher than that in June, but the average was slightly lower. 231 

3.2 Quantitative attribution analysis of yearly and monthly soil erosion distributions 232 

Figure 4 illustrates the quantitative attribution of soil erosion at the annual and monthly scales; 233 

specifically, at the annual scale, topographic factors contribute more to soil erosion, and the dominant 234 

factors in different time periods are different at the monthly scale. At the annual scale, the factors 235 

affecting each factor did not change much and were relatively stable. From the annual scale, the slope 236 

and surface roughness have a greater impact, and the rainfall and vegetation effects are ranked as three 237 

or four. The topographical factor increased its influence before 2005, and the q value reached values 238 

above 0.2 and then experienced fluctuations in terms of its decline and rise. Because both are based on 239 

DEM dataset generation, the effects of surface roughness and slope present a synergistic change. The 240 

rainfall peaked in 2000, and the q value followed with a small decline. 241 

At the monthly scale, the shock of various influencing factors was very obviously, and rainfall and 242 

slope factors had a greater impact at the beginning and end of the year, and in the middle of the year, 243 

vegetation had a greater impact. Compared to the other months, the impacts of land cover in March are 244 

the highest of those for the year. At the beginning and end of the year, when the rainfall and vegetation 245 

coverage are relatively low, rainfall has a greater impact, and in periods of high rainfall and high 246 

vegetation coverage, vegetation factors will play a leading role over the effects of other factors. The 247 

spatial resolution of the NDVI dataset used in this study was 8 km and that of the land cover dataset was 248 

300 m. The spatial resolution of the two was quite different, which caused the detailed land cover 249 

information to be covered by the coarse-resolution vegetation information. Thus, the effect of land cover 250 

on soil erosion would be underestimated in this study. In general, the contribution rate of a single factor 251 

to soil erosion is low. Only in January 2005 did the q value of the rainfall impact reach 0.42, which was 252 
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the highest in the study. In other cases, the q value of the influencing factor of a single factor almost did 253 

not exceed 0.3. 254 

According to Figure 4, because there is some redundancy between slope and surface roughness and 255 

the influence of land cover-related factors is low, the three main factors of topography, rainfall and 256 

vegetation are selected for analysis. The effect of pairwise interactions among the three factors on soil 257 

erosion was studied (Figure 5). In general, the interaction of two factors is more effective in explaining 258 

soil erosion than is a single factor. Similarly, the annual scale suggests that the factors affecting each 259 

factor change little and are relatively stable. At the monthly scale, the shock of various influencing factors 260 

is very obvious. 261 

From the annual scale, the synergy between the NDVI and slope plays a greater role, followed by 262 

the synergy between the rainfall and slope. The q value of the two is approximately 0.4. The NDVI and 263 

slope, the rainfall and slope, and the slope and vegetation are similar in several typical years, including 264 

1995, 2000, 2005, 2010, and 2015. The q value showed an upward trend in 1995 – 2005, then decreased 265 

slightly and finally increased. At the monthly scale, at the beginning and end of the year, the rainfall and 266 

slope were synergistically dominant. In the middle of the year, the vegetation and slope factors were 267 

dominant, and between 2000 and 2015, there were fewer time nodes that shared a combination of rainfall 268 

and vegetation. The rainfall and slope factors showed a relatively obvious increase and then decreased, 269 

reaching the lowest value around July. In several months, the synergy between rainfall and slope reached 270 

its highest in January 1995, and its q value was 0.727. In July 2005, the lowest value was reached, and 271 

its q value was 0.153. The synergy between vegetation and slope showed irregular oscillations in the 272 

months of 1995 and 2000. And in 2005, 2010, and 2015, a certain peak was reached in the middle of the 273 

year. The synergy between vegetation and rainfall presented irregular oscillations in the study years.  274 

 In addition, in most cases, the interaction of the two factors exhibited a significant non-linear 275 

enhancement on yearly scale and monthly scale analysis (Figure S2-S3). Taking the interaction of NDVI 276 

and rainfall as an example, the intensity of the interaction between the two was 1.07 – 1.87 times the 277 

linear sum of the two factors on the yearly scale. On the monthly scale, 95% of the cases show a nonlinear 278 

enhanced situation, and the average intensity of the interaction between the two can be 1.77 times the 279 

linear sum of the two factors, and the highest even reached 5.25 times. The intensity of this nonlinear 280 

enhancement was particularly pronounced in June, July and August. 281 
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3.3 Quantitative attribution analysis of yearly and monthly soil erosion variability 282 

Figure 6 shows the effect of annual and monthly scale single factors on soil erosion. At the annual 283 

scale, the magnitude of the three factors is ranked as rainfall > slope > vegetation. In general, rainfall had 284 

a higher impact on soil erosion than did the other two factors, and the trend of the effect of rainfall first 285 

increased and then decreased. The impact reached its highest in 2005, with a q value of 0.287, and then 286 

it experienced a decline, and the q value of rainfall in 2015 was less than 0.1. The NDVI had a small 287 

impact on soil erosion changes, it experienced a slow rise. The rainfall in 2015 experienced a large 288 

increase compared to that in 2010. 289 

At the monthly scale, the changes in the effects of the three factors are obvious, and the rainfall 290 

factor tends to have a greater impact at the beginning and end of the year due to the obvious changes in 291 

rainfall at the beginning and end of the year. The q value of the rainfall factor at the beginning and end 292 

of the year is higher. In the middle of the year, the change of rainfall is relatively low, which results in a 293 

lower impact on the amount of soil erosion in the adjacent months. For the vegetation factor, the time 294 

period with the lowest impact of the whole year is the period with the smallest q value, which occurs 295 

around July. Due to the year-round variation in the NDVI, the impact of vegetation on soil erosion 296 

changes to a lower value in the middle of the year. 297 

Figure 7 shows the contribution of the two-factor interactions to changes in soil erosion at annual 298 

and monthly scales. At the annual scale, after 2005, the impact of the slope and rainfall interaction is 299 

declining, but at all research nodes, the interaction of the slope and rainfall is the strongest among the 300 

three factors, and the impact of vegetation on soil erosion rises. The interaction between the vegetation 301 

and rainfall experienced an initial increase and then a decrease. At the monthly scale, the interaction 302 

between the rainfall and slope presented a symmetrical pattern, with a greater effect at the beginning and 303 

end of the year; furthermore, it reached its lowest value for the year around July. However, the others 304 

showed a vibrating state. Overall, the two-factor interaction was more powerful than was the single-305 

factor interpretation, and changes in soil erosion were more sensitive to fluctuations in rainfall than to 306 

fluctuations in vegetation. 307 

Similarly, in terms of the effects of the interaction between two factors on soil erosion variability, 308 

the interaction of the two factors also showed a significant nonlinear enhancement on yearly and monthly 309 

scales (Figure S4-5).On the annual scale, the intensity of the interaction between NDVI and rainfall was 310 
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1.14-1.86 times the linear sum of the two, the interaction between NDVI and slope was 1.48-3.00 times, 311 

and the interaction intensity between rainfall and slope was 1.21-2.30 times. On the monthly scale, taking 312 

the interaction of NDVI and rainfall as an example, 92.7% of the cases showed a nonlinear enhanced 313 

situation. The average intensity of the interaction between the two factors can be 1.44 times the linear 314 

sum of the two, and the highest even reached 3.81. Times. 315 

4 Discussion 316 

4.1 Integrating temporal and spatial heterogeneity effects into soil erosion management 317 

 Ecosystems are complex entities that span geographic and temporal scales and are inconsistent with 318 

various man-made jurisdictional and political demarcations (Bodin, 2017). Given these conditions, it is 319 

important for the structures of governance to solve the institutional fragmentation and match the temporal 320 

and spatial extents of ecosystem processes (Lubell, 2013). Cross-border and cross-scale collaboration is 321 

often seen here as a means by which to overcome such institutional fragmentation (Cosens, 2013; Walker 322 

et al., 2009). Therefore, it is urgent to integrate temporal and spatial heterogeneity effects into erosion 323 

management and to achieve a collaborative environmental governance framework for soil and water 324 

conservation. 325 

According to Figure 3, soil erosion shows a high level of temporal variability, with soil erosion 326 

being highest in July and lower at the beginning and end of the year. The reason for this heterogeneity in 327 

soil erosion is because the parameters associated with soil erosion show an equally high spatial 328 

heterogeneity (Nearing et al., 1999). The period of the highest soil erosion during the year should be the 329 

period combined with high rainfall erosivity (high R factor) and low vegetation cover (high C factor). If 330 

the annual average data are used to blindly assess soil erosion on a detailed time scale, it may cause an 331 

incorrect estimate of soil erosion, which is not conducive to the implementation of soil and water 332 

conservation work. 333 

 Based on the analyses in Figures 4-7, we found that the distribution patterns of soil erosion and the 334 

factors that drive changes in soil erosion vary from month to month. In general, for this study area, 335 

rainfall has a greater impact during periods of low rainfall and vegetation coverage, the contribution of 336 

vegetation is greater during periods of high vegetation coverage and rainfall. In short, we need to plan 337 

reasonable soil and water conservation work based on the characteristics of the time period. In recent 338 
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years, demographic, cultural and political changes have had a strong impact on deforestation, replacing 339 

forests with croplands, and this practice has led to an increase in soil erosion (Begueria et al., 2006). A 340 

large range of soil and water conservation measures have been adapted to increase agricultural production 341 

and reduce soil erosion. These techniques are mainly concentrated on reducing slope correction/water 342 

velocity (i.e., bench terraces), increasing vegetation cover (i.e., cover crop, mulching, permanent cove 343 

with tree/crop/herbaceous associations and rangeland restoration) and/or improving soil quality (i.e., 344 

amendments) (Raclot et al., 2018). However, these control measures become more concentrated by 345 

changing the C factor or the LS factor. We found that the soil erosion distribution and changes were more 346 

sensitive to the interaction of two factors compared to that of a single factor. In other words, soil erosion 347 

control measures for two or more factors may have a significant improvement. Furthermore, all of these 348 

techniques have been introduced with varying degrees of success depending on the environmental and 349 

societal contexts (De Graaff et al., 2013; García-Ruiz et al., 2013). 350 

 The formulation and implementation of land use policies and ecological protection policies cannot 351 

be constrained to certain administrative units (Chi and Ho, 2018). The management of soil erosion risk 352 

should also break through the boundaries of administrative units; however, most work is based on the 353 

three-level basin scale. Promoted by the Chinese Government, the River Chiefs system is well-placed to 354 

coordinate various governmental departments and improve the efficiency and efficacy of a multitude of 355 

water-resource management efforts, operating on the provincial, city, county, and township levels. 356 

Drawing on the experience of the River Chiefs system, it is urgent to establish a water and soil 357 

conservation management system based on different river basin level scales. Furthermore, human 358 

behaviours and multiple ecosystem processes have been interconnected, and ecosystem management 359 

may trigger possible unprecedented effects on the target and/or non-target processes (Zhao et al., 2018). 360 

Therefore, soil and water conservation is by no means an isolated act because soil erosion control may 361 

cause multiple effects from the local to regional scales (Fu et al., 2017). Using soil and water conservation 362 

as a case study, there can be positive effects, such as soil conservation and C fixation, at the local scale 363 

(Wang et al., 2015); however, it can also lead to environmental problems downstream, such as dried soil 364 

layers and water shortages (Feng et al., 2016). Large-scale soil and water conservation requires cross-365 

sectoral and cross-regional trade-offs and coordination. 366 
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4.2 The direction of model improvement 367 

Scale refers to the time and space dimension of the object of process under study, and the 368 

appropriate scale for observations is a function of the type of environment and the type of information 369 

desired (Woodcock and Strahler., 1987). The representation of geographical phenomena on the time and 370 

space scales, as the time and space resolutions of observations change, the information that is obtained 371 

also changes. The spatial scale of the application of RUSLE’s original design should be only at the plot 372 

scale. However, with the deepening of the research, the RUSLE model has been applied to larger scales, 373 

e.g., nation (Van der kniff, 1999), continent (Van der kniff, 2000) and even global (Borrelli et all, 2013), 374 

by adjusting the data sources, algorithms and parameters of some factors in RUSLE. However, the 375 

exploration of using RUSLE at different temporal scales is still lacking, and a small number of studies 376 

focus on the C factor for a more in-depth discussion (Alexandridis et al., 2015; Schmidt et al., 2018). 377 

However, there has been a rapid advancement of remote sensing and GIS technology and an 378 

improvement in the satellite revisiting cycle, which provides data with different spatial and temporal 379 

resolutions and data downscaling methods. The data accumulated by long-term field testing also provide 380 

extensive and accurate verification values for the validation and application of the model. Overall, a lack 381 

of data is no longer a hindrance to the development of soil erosion models. High temporal resolution 382 

products based on MODIS data series have been widely used. The high temporal resolution of soil 383 

erosion mapping should also receive attention. 384 

 Previous scholar’s improvements to RUSLE model have focused on the correction of factors. For 385 

R factor, the classic formula for rainfall erosivity needs to have continuous rainfall intensity data in the 386 

practical application, which limits the calculation of rainfall erosivity in areas where data is lacking. In 387 

recent years, scholars have proposed a number of simplified models based on more data types to try to 388 

eliminate the above difficulties, such as using annual rainfall to estimate rainfall erosivity, which has 389 

been applied in many areas (Renard and Freimund, 1994; Xu, 2005). For C factor, the differences of 390 

environment in different study areas are not the same. It is often determined according to the actual 391 

situation or a different method to determine the value of C factor. When the environment of the study 392 

area is similar to the area constructed by USLE/RUSLE model, the lookup table provided by 393 

USLE/RUSLE model is directly used to determine the value of C factor. Many scholars have first 394 

established a relationship model between vegetation coverage and C factor based on field test, then 395 
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estimate value of C factor using vegetation coverage remote sensing data. The relationship between the 396 

amount of soil erosion and various environmental factors provides some new ideas for the improvement 397 

of the RUSLE model. Based on the study of Figure 4 and Figure 6, slope has a greater impact on the 398 

spatial distribution of soil erosion, and the change in soil erosion is more sensitive to the change in rainfall. 399 

The finer R factor method and rainfall datasets can more accurately characterize the change in soil 400 

erosion, while the finer LS factor and method can invert the spatial distribution of soil erosion. Of course, 401 

any improvement in data, method, and parameters for each factor in the RUSLE model can effectively 402 

improve the accuracy of soil erosion, but it may be a more efficient direction to explore the R or LS 403 

factors in depth over the other factors. 404 

 Many of the currently developed C factor formulas combine land use and NDVI data (Panagos et 405 

al., 2015; Jiang et al., 1996; Liu et al, 2010). However, the inconsistency of the spatial resolution scale 406 

of the NDVI and land cover data result in greater uncertainty of the research in specific applications. 407 

Therefore, the adaptability of the spatial resolution of the two kinds of data should be fully considered in 408 

the development of C factor formulas that combine vegetation and land cover data. 409 

4.3 Uncertainty analysis and future perspectives 410 

 The method used to evaluate the factors affecting soil erosion was the geographical detector method, 411 

but the input of independent variable data used by this tool must be discretized according to certain 412 

principles. The choice of discretization methods will inevitably affect the interpretation of the final results. 413 

According to the previous experience of soil erosion (Gao and Wang, 2019), we used the natural break 414 

method, and the input data were divided into 9 categories. In addition, due to the lack of data and the 415 

spatial resolution of the research, P factor was set to 1, which inevitably leads to an overestimation of 416 

amount of soil erosion. If the value of P factor is based on the research results of Fu et al. (2005) on the 417 

watershed scale of the Loess Plateau, the P factor is assigned based on the slope. The final calculated 418 

amount of soil erosion is about 1/4 of the original method calculation. However, considering the 419 

applicability of scales, the P factor method at the watershed scale may not be suitable for this study. The 420 

calculation method of P factor for large scale research is worthy of further development and exploration. 421 

 This study applies the RUSLE model to a monthly scale, which violates the original intention of 422 

the RUSLE model design, but we think this was an effective attempt. The amount of monthly scale 423 

erosion that may be assessed is not accurate but reflects the trend in soil erosion at a monthly scale to 424 
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some extent. We believe that this study provides many useful ideas and inspirations for soil erosion 425 

assessment and control. 426 

5 Conclusion 427 

 The current study identified the dominant factors (and combinations of factors) of soil erosion in 428 

the Yellow River basin of China and its variability in the typical years of 1990, 1995, 2000, 2005, 2010 429 

and 2015 based on the RUSLE model and the geographical detector method. 430 

 Topographical factors such as slope and surface roughness have a greater impact on the spatial 431 

distribution of soil erosion, followed by rainfall and vegetation. In periods of low rainfall and vegetation 432 

coverage, the interaction of rainfall and slope has a great influence on the distribution of soil erosion. 433 

And in periods of high vegetation coverage and high rainfall, the spatial distribution of soil erosion is 434 

greatly affected by the synergy of vegetation and slope. The change in rainfall contributes greatly to the 435 

change in soil erosion, but the contribution decreases each year, and the contribution of vegetation change 436 

increases each year. 437 

We found that the distribution patterns of soil erosion and the factors that drive changes in soil 438 

erosion vary from month to month and vary from area to area. It is necessary to combine the temporal 439 

and spatial heterogeneity with the soil erosion management and form a collaborative environmental 440 

governance framework. A finer LS factor formula, terrain datasets, R factor formula and rainfall datasets 441 

can more accurately characterize the distribution and variation of soil erosion. Future research needs to 442 

develop soil erosion assessment models for higher temporal resolutions (monthly scale) to cope with soil 443 

erosion risks. 444 
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 621 
Figure 1: The location of the study area in China and the regional topography. 622 

 623 
Figure 2: Distribution of soil erosion in the Yellow River basin in 2015. 624 
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 625 
Figure 3: Variation in average monthly soil erosion from 1995 to 2015. The solid point represents the amount 626 
of soil erosion during this time period, the asterisk represents the average amount of soil erosion during this 627 
period, and the horizontal line refers to the median of soil erosion during this period. 628 

 629 
Figure 4: Contribution analysis of a single factor to the soil erosion distribution on a yearly and monthly scale. 630 
SR refers to the surface roughness, LCC refers to the land cover complexity, LUCC refers to the land use and 631 
land cover change, NDVI refers to the normalized difference vegetation index, PRCP refers to the 632 
precipitation and SLOPE refers to the surface slope gradient. The shadows of different colours represent the 633 
factors represented by the colour during this time period, which contribute more to soil erosion than other 634 
factors. 635 
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 636 
Figure 5: Contribution analysis of multiple interacting factors to soil erosion distribution on a yearly and 637 
monthly scale, where NDVI refers to the normalized difference vegetation index, PRCP refers to the 638 
precipitation and SLOPE refers to the surface slope gradient. The shadows of different colours represent the 639 
factors represented by the colour during this time period, which contribute more to soil erosion than other 640 
factors. 641 
 642 

 643 
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Figure 6: Contribution analysis of a single factor to soil erosion variability on a yearly and monthly scale, 644 
where NDVI refers to the normalized difference vegetation index, PRCP refers to the precipitation and 645 
SLOPE refers to the surface slope gradient. 646 

 647 

Figure 7: Contribution analysis of multiple interacting factors to soil erosion variability in yearly 648 
and monthly scales, where NDVI refers to the normalized difference vegetation index, PRCP refers to the 649 
precipitation and SLOPE refers to the surface slope gradient. 650 
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