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Abstract. Rainfall-induced debris flows in recently burned mountainous areas cause 

significant economic losses and human casualties. Currently, prediction of post-fire debris 15 

flows is widely based on the use of power-law thresholds and logistic regression models. 

While these procedures have served with certain success in existing operational warning 

systems, in this study we investigate the potential to improve the efficiency of current 

predictive models with machine-learning approaches. Specifically, the performance of a 

predictive model based on random forest algorithm is compared against current techniques 20 

for the prediction of post-fire debris flow occurrence in the western United States. The 

analysis is based on a database on post-fire debris flows recently published by United States 

Geological Survey. Results show that predictive models based on random forest exhibit 

systematic and considerably improved performance with respect to the other models 

examined. In addition, the random forest-based models demonstrated improvement in 25 

performance with increasing training sample size, indicating a clear advantage regarding 

their ability to successfully assimilate new information. Complexity, in terms of variables 

required for developing the predictive models, deems important but the choice of model 

used is shown to have a greater impact on the overall performance. 
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1. Introduction 

Wildfires constitute a natural hazard with devastating consequences to natural and built 

environment. In addition to the immediate impact of wildfire events to human lives, 

infrastructure and the environment, their adverse effects on landscape characteristics 

generate a cascade of hydrogeomorphic hazards (Diakakis et al. 2017). One of the most 5 

frequent post-fire hazards is debris flow. Debris flows are rapidly flowing, gravity-driven 

mixtures of sediment and water commonly including gravel and boulders (Iverson, 2005), 

which rush down on steep channels and discharge onto debris fans, posing significant threat 

to downstream populations.  

Post-fire debris flows (hereinafter DF) are predominantly derived from channel erosion 10 

and incision, usually generated during heavy precipitation events on burned areas (Cannon 

and DeGraff, 2009).  Recent studies have shown that in fire affected regions the threat 

associated to debris flows may persist for several years after the fire incident (DeGraf et 

al., 2015; Diakakis et al., 2017), demonstrating the necessity for developing short and long-

term plans for the mitigation of this hazard (DeGraf et al., 2015).  15 

In the western United States, DF is a well-recognized hazard that has claimed human lives 

and caused severe damages to infrastructure over the years (Cannon and Gartner, 2005). 

The occurrence of DF hazard in this region is expected to further intensify due to expected 

increase in fire occurrence and fire season length, as a result of climate change (Riley and 

Loehman, 2016), and the continuous population growth on the wildland-urban interface 20 

(Cannon and DeGraff, 2009). Therefore, developing effective measures to reduce 

vulnerability of local communities to DF is of paramount importance.  

Early warning is a critical element for the successful mitigation of DF hazard. Over the last 

decade a number of researchers have worked on developing procedures for predicting DF 

in western US (Cannon et al., 2008; Cannon et al., 2011; Staley et al., 2013). In addition, 25 

federal agencies associated with monitoring and forecasting of natural hazards like the 

United States Geological Survey (USGS), National Oceanic and Atmospheric 

Administration (NOAA) and National Weather Service (NWS) have jointly developed a 

debris flow warning system for recently burned areas (Restrepo et al., 2008). In their vast 

majority, the foundation of these warning procedures lies on empirical relationships that 30 
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are used to identify the conditions likely to lead to the occurrence of DF. In their simplest 

form, these relationships refer to rainfall intensity (or accumulation)-duration thresholds 

above which DF is likely to occur (Cannon et al., 2008; Cannon et al., 2011; Staley et al., 

2013). Other procedures involve application of statistical models that incorporate 

information on land surface characteristics (e.g. percentage of burned area, local 5 

topographic gradients etc.), in addition to rainfall properties, to predict the likelihood of a 

DF occurrence. The most commonly used statistical model for DF prediction is the logistic 

regression (Rupert et al., 2008; Cannon et al., 2010). Updates of these past prediction 

models were recently suggested by Staley et al. (2017), who proposed a new logistic 

regression model that improves current DF prediction procedures in western United States. 10 

Additionally, in a recent study by Kern et al. (2017), a number of machine learning 

approaches were evaluated for DF prediction. The conclusions based on that study is that 

advanced statistical modeling techniques can offer significant improvement in the 

performance of current DF prediction models. 

Both of the recent works of Staley et al. (2017) and Kern et al. (2017) suggest that although 15 

models for DF prediction may already exist for specific regions (Cannon et al., 2010), the 

importance of improving their accuracy and also extending prediction beyond the 

boundaries of these regions calls for continuous advancements of currently established 

procedures. Following this line of thought, this study focuses on the development of a new 

DF prediction model that is based on a non-parametric statistical approach and the 20 

evaluation of its performance against state-of-art approaches for DF prediction in the 

western United States. Specifically, we evaluate the performance of four models that 

include i) rainfall accumulation-duration thresholds (Guzzetti et al., 2007, Cannon et al., 

2011; Rossi et al. 2017; Melillo et al. 2018), ii) the logistic regression model suggested by 

Staley et al. (2017) and iii) two models based on the random forest technique (Breiman, 25 

2001) that are introduced in this study. In addition to the consistent evaluation of the 

performance of each model, this work investigates the relationship between prediction 

accuracy with complexity and data requirements (in terms of both record length and 

variables required) of each model. These are important aspects for selecting the most 

appropriate method and for providing guidance for data scarce regions at global scale. 30 
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2. Study area and data 

This study is based on a USGS database that was recently published (Staley et al., 2016) 

and includes information on the hydrologic response of several burned areas in the western 

United States (Fig.1). The database reports the occurrence of debris flow (DF) or no-debris 

flow (noDF), and rainfall characteristics for 1550 rainfall events in the period 2000-2012 5 

together with field-verified information characterizing the areas affected by wildfires 

(Table 1). The area of fire-affected catchments analyzed varied between 0.02 and 7.9 km2. 

Rainfall data were collected from rain gauges located within a maximum distance of 4 km 

from the documented response location. Reported rainfall characteristics included rainfall 

peak intensities (and accumulations) at 15, 30 and 60 min time intervals, event total 10 

accumulation, duration and average intensity. According to the description of the dataset 

provided in Staley et al. (2016), the rainfall characteristics (peak intensities, accumulation 

etc) were calculated using a backwards differencing approach (Kean et al., 2011). Land 

surface characteristics of burned areas were recorded in order to evaluate the influence of 

the burned area to the hydrologic response. Information on burn severity was based on the 15 

differenced normalized burn ratio (dNBR) (Key and Benson, 2006), calculated from near 

infrared and shortwave infrared observations, which is frequently used for classification of 

burn severity (Miller and Thode, 2007; Keeley, 2009). Severity classification from dNBR 

was validated from field observations provided by local burned area emergency response 

teams. In addition to dNBR, the database includes information on the proportion of upslope 20 

catchment area that has been classified at high or moderate severity and with terrain slope 

higher than 23°. Finally, since in burned areas changes in recovery vegetation increase 

erosion, the average erodibility index (Kf factor) derived from the STATSGO database 

(Schwartz and Alexander, 1995) is reported in the database as well. Kf factor provides 

evidence of erodibility of soil, taking into account the fine-earth fraction (<2mm). For more 25 

information on the estimation procedures of the variables (Table 1), the interested reader 

is referred to Staley et al. (2016) and references therein. 

The 334 events (~22%) of hydrologic responses in the database were identified as debris 

flows. The location of events in the dataset correspond predominantly to the area of 

southern California (CA), which includes 61% (60%) of all records (DF records). Colorado 30 

(CO) corresponds to 20% (10%) of the data (DF) and the rest of data correspond to other 

regions (Arizona (AZ), New Mexico (NM), Utah (UT), Montana (MT)) of western US 

(Fig. 1).  Since values for some of the variables (e.g. rainfall duration, 15min peak intensity 
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etc.) are not reported consistently for all records, the analysis presented hereinafter is 

focused only on the 1091 events with complete record that involve the areas of Arizona, 

California, Colorado  and New Mexico. 

3. Seasonality and characteristics of rainfall events 

Most of the western United States is characterized by dry summers, when the fire activity 5 

is widespread, with a high percentage (50–80%) of annual precipitation falling during 

October-March. However, there are also regions, such as Arizona and New Mexico where 

heavy rains occur between July and August as a result of the North America monsoon 

(Westerling et al., 2006). More specifically, four different seasonal rainfall types 

characterize the Southwest United States (Moody and Marty, 2009): Arizona, Pacific, Sub-10 

pacific, and Plains types. Arizona is characterized by dry spring, fall season is moist and 

winter and summer are wet; California is mainly characterized by Pacific type when 

maximum rainfall occur in winter season and summer is extremely dry. The Sub-pacific 

type, with wet winter, moist spring and summer, and fall dry, characterizes the southern 

part of Sierra Nevada region, a small area in the southern California. Climate similar to 15 

Arizona type characterizes the southwest Colorado, the East Colorado is characterized by 

Plains type, where the rainfall maxima occurs in summer. The Arizona type characterizes 

also the western New Mexico while the eastern part is characterized as Plain type.  

Examination of the seasonality of the rainfall events analyzed (Table 2) demonstrates the 

similarities and differences attributed to the different climate types described above. The 20 

vast majority (92%) of rainfall events in Arizona occurred during the summer months (July 

and August). Similarly, the majority of rainfall events in western Colorado, occurred during 

late summer-early fall months (August and September).  California, which is influenced by 

the Pacific rainfall regime, is dominated by winter rainfall events where 82% of events 

occurred between December and January. Seasonality of rainfall events for the New 25 

Mexico State exhibit a characteristic dominance of occurrences in summer with 94% of the 

events occurring in July and the remaining in June.  

The North America monsoon is responsible for the summer rainstorms in these regions that 

typically last between June and mid-September, causing strong thunderstorm activities in 
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the uplands of Arizona and New Mexico and the absent of rainy events in southern 

California (Mock, 1996; Adams and Comrie, 1997). September is the rainiest month in 

Colorado because of mid-latitude cyclones coming from Gulf of Alaska (Mock, 1996). 

Differences in seasonality and large scale climatic controls, correspond essentially to 

differences in dominant precipitation type (e.g. convective vs stratiform) and differences 5 

in characteristic properties of rainfall events triggering debris flows (Nikolopoulos et al., 

2015). Analysis of the characteristics of the rainfall events revealed clear regional 

dependences and for certain regions there were also distinct differences in the 

characteristics between DF and noDF events (Fig. 2).  

Rainfall duration for events in Arizona and New Mexico is significantly lower than events 10 

in other regions, with California being associated with the longest duration events (10-70h 

in most cases), typical for the winter type rainfall that is dominant in this region. The DF-

triggering events for Arizona, Colorado and New Mexico correspond to the lowest duration 

events while the opposite is shown for California (Fig.2a). Variability among regions and 

within noDF and DF-triggering events exists also for the magnitude of rainfall events 15 

(Fig.2b,c). With the exception of events in New Mexico, the other regions exhibit a distinct 

separation in the distribution of total rainfall accumulation (Fig.2b) and peak 15min 

accumulation (Fig.2c) between DF and noDF events. For these regions, the highest values 

for both variables are associated with the DF-triggering events, which justifies the rational 

for using these variables for predicting DF occurrence.  20 

In addition to the marginal distribution of the rainfall variables shown in Figure 2, the 

relationship between duration and magnitude is presented in Figure 3. California events are 

distinctly clustered over the high duration-accumulation area (Fig.3a) demonstrating the 

already discussed regional dependence of rainfall characteristics. The total rainfall 

accumulation is strongly correlated with duration for the DF-triggering events (Pearson’s 25 

correlation coefficient 0.7). On the other hand, the peak 15min accumulation, which is a 

proxy for max intensity of the events, does not correlate well with duration (Pearson’s 

correlation coefficient -0.2). Overall, it is apparent from Figure 3 that there are areas in the 

accumulation-duration spectrum where the DF and noDF events are well mixed, which 

highlights the challenge of identification between the two and the need for classification 30 

approaches based on additional parameters. 
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Findings from the analysis of rainfall seasonality provide clear indications that there are 

distinct regional differences of the triggering rainfall characteristics. This justifies the 

development of regional predictive models as stated in past studies and raises an important 

point of consideration for creating a single multi-region wide framework for DF prediction.  

The issue of regional dependence and how it can be incorporated into a single model is 5 

further discussed in section 4.1.3 below.  

4.  Methods 

4.1 Models for predicting post-fire debris flow occurrence  

This section describes the different models that will be evaluated for predicting post-fire 

debris flow (PFDF) occurrence. Selection of the different models is based on criteria of 10 

model simplicity, data requirements and relevance to common practice.  

4.1.1 Rainfall thresholds 

Rainfall thresholds correspond to one of the simplest and most widely used approaches for 

predicting the occurrence of rainfall-induced mass movements such as shallow landslides 

and debris flows (Caine, 1980, Guzzetti et al., 2007, Cannon et al., 2011). Rainfall 15 

thresholds are commonly formulated as power-law relationships that link rainfall 

magnitude and duration characteristics as in the following:  

𝐸 = 𝛼𝐷𝛽                                                                                                         (1) 

where total event rainfall accumulation (E) is related to event duration (D). The intercept 

(α) and exponent (β) are parameters estimated from the available observations. In this case, 20 

the threshold (hereinafter ED threshold) provides the rainfall accumulation above which a 

debris flow event will occur for a given duration. In this work, parameter β was estimated 

according to the slope of log(E) vs log(D) using least squares linear regression and 

considering only the events that resulted in debris flows. The full record (both DF and 

noDF events) was then used to identify the optimum value of parameter α. Details on the 25 

optimization of parameter α and the criteria used are discussed in section 4.3. 
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4.1.2 Logistic regression  

Another model that is frequently used for modeling the statistical likelihood of a binary 

response variable is the logistic regression (LR) model.  In western United States, LR 

models were first developed for DF prediction almost a decade ago (Rupert et al., 2008, 

Cannon et al., 2010) and are still used to date (Staley et al., 2016, 2017).  5 

The probability of occurrence (P) of PFDF according to logistic regression is given as  

𝑃 =
𝑒x

1+𝑒x
                 (2) 

where the link function x is modeled as a linear combination of one or more explanatory 

variables according to: 

𝑥 = 𝛾 + 𝛿1𝑋1 + δ2𝑋2+. . +𝛿𝑛𝑋𝑛                                                          (3) 10 

where Xn  is the nth explanatory variable and γ and δn are parameters estimated from the 

observation dataset. Selection of the explanatory variables is very crucial for successfully 

developing LR models. In this study, we adopted the latest LR model proposed by Staley 

et al. (2016, 2017), which can also be considered as the state-of-the-art for DF prediction 

in western US. After a thorough examination of several LR models, the authors of those 15 

works concluded that the most appropriate set of explanatory variables are: 

X1= max 15 min rainfall accumulation * proportion of upslope area burned at high or 

moderate severity with gradients ≥ 23°  

X2= max 15 min rainfall accumulation * average dNBR normalized by 1000  

X3= max 15 min rainfall accumulation * soil KF-Factor  20 

Based on this formulation, information on the maximum 15 min rainfall accumulation is 

used to weigh the other three parameters (upslope burned area, average dNBR and KF-

factor) considered. Parameters γ and δn were estimated based on least squares regression. 

Specifically, the “glmfit” function of MATLAB software (version 2017b) was used to fit 

the binomial distribution to available data using the logit link function. 25 

4.1.3 Random forest 

Random forest (RF) is a non-parametric statistical technique that is based on decision tree 

ensemble (i.e. forest) procedure for classification or regression (Breiman, 2001). Despite 

being a well-known algorithm with extensive use in other fields (e.g. medicine); there are 

not many examples of RF applications in hydrogeomorphic response studies and most of 30 
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them deal with landslide susceptibility (e.g. Brenning, 2005; Vorpahl et al., 2012; Catani 

et al., 2013; Trigila, 2015). Some of the main advantages of RF algorithm is that it allows 

to mix numerical and categorical variables and it does not require any knowledge on the 

distribution of variables and the relationship between them. In this work, we used RStudio 

software and the R package “randomForest” (Liaw and Wiener, 2002) to develop the RF 5 

model for PFDF prediction.  

For the selection of the most important variables for the RF model we tested several 

different scenarios of variable combinations. During that investigation, we found that the 

use of an extra categorical variable (named “region class” hereinafter) that is used to 

classify the dataset into two geographic regions (i.e. within California and other) improves 10 

RF model performance and thus was included in the variables used for the RF development. 

Explanation for the importance of this regional distinction lies on the existence of a clear 

difference in the seasonality and subsequently rainfall characteristics between California 

and other regions considered. From all the different combinations of variables tested 

(results not shown) we identified two different models that we present and discuss in the 15 

work. The first model (RF-ED) was developed using the variables of rainfall accumulation, 

duration and region class. It is the model that we consider as the one with minimum data 

requirements, given that only two rainfall variables and a region classification is used for 

the prediction. The second model (RF-all), is considered as the “data demanding” RF 

model and uses almost all available information on rainfall characteristics, burn severity, 20 

land surface properties etc. Table 3 reports all the variables used in each model.  

4.2 Model performance criteria 

Evaluation of model performance in predicting DF occurrence was based on the 

contingency table (Table 4), which is used to measure the number of correct/false 

predictions. True positive (TP) corresponds to the number of debris flow events correctly 25 

predicted by the model, false positive (FP) indicates the number of falsely predicted debris 

flows, false negative (FN) is the number of missed debris flow events and true negative 

(TN) corresponds to the “NO debris flow” events correctly predicted. The metrics, 

according to the contingency table, that we use in the evaluation of the predictive skill of 
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the models are the threat score (TS), the true positive rate (TPR) and the false positive rate 

(FPR) defined as 

 

 𝑇𝑆 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
                (4) 

 5 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (5) 

 

 𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
                 (6) 

 

 10 

The threat score (known also as critical success index) provides information on the overall 

skill in predicting positive (i.e. DF) responses with respect to total (TP+FP) and missed 

(FN) positive predictions. TPR and FPR provide information on correct positive and false 

positive predictions as percentage of the total positive and negative events respectively. 

Lastly, the predictive performance of the different models examined is assessed based on 15 

the Receiver Operating Characteristic (ROC) curves (Fawcett, 2006). 

4.3 Identification of thresholds 

Whether using ED, LR or RF models, identification of debris flow occurrence is based on 

the use of a threshold value above which we consider that a debris flow will occur. In the 

case of ED thresholds, the slope (parameter β) is estimated from the data (as discussed in 20 

section 4.1.1) and the intercept (parameter α) is identified according to the maximization 

of TS. In other words, given the estimated parameter β, ED threshold is always defined in 

order to achieve maximum TS value for the dataset used to “train” the model (see example 

in demonstrated in Fig.4a).  

LR and RF models estimate a probability of DF occurrence for both DF and noDF events. 25 

Equivalently, this requires the selection of the appropriate threshold of probability value 

above which we consider DF occurrence. Often the probability threshold corresponds to a 

value of 0.5 (see for example Staley et al., 2017) but this does not necessarily imply 

optimum performance considering that DF and noDF events are not perfectly separated 
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and some overlap in probability space exists (see example in Fig. 4b). During the “training” 

of both the LR and RF models, we allow the probability threshold value to be defined 

according, again, to the maximization of TS value. 

 

4.4 Model training and validation framework 5 

For training and validation of the predictive models we followed two different approaches 

that included a Monte Carlo random sampling and hold-one-out validation framework. 

In the random sampling framework, a training dataset of size M and a test dataset of size K 

is sampled randomly from the original data sample. The training data are used to train each 

model (i.e. estimate parameters for ED and LR and build RF) and then the trained models 10 

are evaluated using the test data. This random sampling training-validation procedure was 

repeated 500 times to provide an estimate of the effect of sampling uncertainty on the model 

performance. The only condition that was imposed during the construction of the random 

train/test samples was the proportion of DF/noDF events in each sample. We set the 

percentage of DF events to be 20% in both train and test following approximately the same 15 

percentage used in the training dataset of Staley et al., (2017), which corresponds roughly 

also to the percentage of DF events in the original sample as well. The test sample size Κ, 

was fixed to 100 while the train sample size M was allowed to vary from 100 up to 900 to 

allow also investigation of the sensitivity of results to different train sample sizes. 

In the hold-one-out validation, all events in the database except one, are used each time as 20 

the training dataset and the models are evaluated for each event that is left out. This 

procedure is repeated by sequentially holding out all events essentially allowing to validate 

the models against all available events. This process somewhat mimics better what would 

have been done in practice, considering that in an operational-like environment we would 

be training our predictive models with all available “historic events” and use them to 25 

predict the next “new” event. Therefore, in this case the training sample size was equal to 

1090 and was constructed by sequentially leaving one event out from the original sample 

size. The training/validation process was repeated until all events were included as 

validation points (i.e. 1091 times).  
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5. Results and Discussion 

In this section, we present and discuss the findings based on the evaluation results for the 

different predictive models and the two validation frameworks considered.  

5.1 Random sampling validation  

The random sampling validation results (Fig. 5) demonstrate the relative performance of 5 

the models examined as a function of the training sample size. Interestingly, even for the 

smallest sample size examined (M=100) the RF-based models exhibit higher median values 

than the ED and LR models but at the same time are characterized by greater variability in 

their performance, manifested on the graph as larger boxes.  As sample size increases the 

model performance (in terms of TS values) increases for both RF-based models. An 10 

interesting point to note from these results is that for the smaller sample sizes examined 

(M=100-500) the RF-ED performed marginally better than the RF-all but as the sample 

size increased, the situation is reversed and higher TS values are associated with the RF-all 

model. This suggests that the increasing amount of data used for training improves at a 

higher rate the RF-based model that involves a greater number of explanatory variables. 15 

On the other hand, both ED and LR models exhibit overall consistently lower performance 

than RF-based models and lower sensitivity to sample size.  

A summary of the change of TS distribution with sample size is presented in Table 5, were 

the relative difference in median and interquartile range (IQR), between maximum 

(M=900) and minimum (M=100) sample size examined, is reported for each model. The 20 

performance of RF-ED model improved significantly with an increase in the median value 

by 51 % and a decrease in the IQR by 20 %. The RF-all model showed even higher increase 

in the median (63 %) but variability in performance remained practically unchanged. On 

the other hand the ED and LR model showed much lower (than RF-based) increase in 

median (7 and 11 % respectively) but exhibited considerable decrease in IQR (25 % and 25 

19 % respectively).  

Furthermore, the relative difference between the models is presented for the highest sample 

size (Μ=900) and with reference to the LR model, which corresponds to the current state-

of-the-art in PFDF occurrence prediction for western United States (Staley at al., 2017). 
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Based on the results (Table 6) the RF-ED model TS is 55 % higher than the LR model but 

with an increased IQR (+12 %). The RF-all model TS is 58 % higher but with significantly 

increased variability in performance (IQR +54 %). The ED model performs slightly lower 

( -3 % in median) but with reduced variability (IQR -17 %) relative to the LR model.  

The results from this random sampling validation exercise demonstrate a superior 5 

performance of the RF-based models particularly for the largest sample sizes examined. 

For the smallest sample size, the RF-based models are characterized by significant 

variability in their performance, which may raise questions regarding their applicability 

when short data records are available. However, for higher sample sizes and despite the 

fact that variability remains, the median performance increases to the degree that makes 10 

clear the distinction in performance with respect to other models. Additionally, an 

important note is that overall the variability of the performance of all models, for a given 

sample size, is considerable and this essentially highlights the effect of sampling 

uncertainty; an aspect that requires careful consideration for the development and 

application of such predictive models.  15 

 

5.2 Hold-one-out validation  

For the hold-one-out validation, results are reported by considering collectively the model 

prediction outcome for all events, meaning that the prediction of all 1091 events were used 

to summarize the performance indicators (TS, TPR, FPR) reported in Table 7. Recall that 20 

for the prediction of each event, each model was trained with the remaining dataset (i.e. 

1090 events) and thresholds were determined according to the maximization of TS in each 

case. According to the TS values reported, the RF-based models with TS equal to 0.63 (RF-

ED) and 0.64 (RF-all) exhibit considerably improved performance with respect to the ED 

and LR models with TS values of 0.41 for both models. Comparison of the TPR and FPR 25 

values suggests that the superiority of RF-based models is primarily attributed to the lower 

false alarm rates ( 11 %) relative to ED and LR models (~30 %). The true positive rate 

appears equivalent among the different models.  

However, an important note here is that these metrics (TS, TPR, FPR) depend highly on 

the selection of the threshold. So far in the analysis we have considered the identification 30 
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of thresholds based on maximization of TS. To further investigate the dependence of results 

for varying thresholds we evaluated the model performance considering a variable 

threshold and reported the results based on the Receiver Operating Characteristic (ROC) 

curves (Fawcett, 2006). In the ROC graph (Fig. 6), the point (0, 1), which corresponds to 

100 % TPR and 0 % FPR represents the points of perfect prediction. The 45o line 5 

correspond to a random predictor (i.e. 50 % of the times being correct) and any point above 

that line corresponds to a model with some predictive skill. The ROC curves demonstrate 

the model’s predictive performance for different thresholds and the higher the area under 

the curve (AUC) the more skillful the model is.  From a visual examination of the ROC 

curves in Fig. 6, one can quickly identify a number of main points regarding the predictive 10 

skill of the models examined in this study. First, all models show significant skill (i.e. large 

departure from 45o line).  Second, the performance of all models is highly dependent on 

the selection of the threshold. Third, the performance for the thresholds corresponding to 

maximization of TS (denoted as solid circles in Fig. 6) does not necessarily coincide with 

the point of best available performance (i.e. point closer to point (0,1)). The ROC curves 15 

from RF-based models demonstrate once again the superior performance of both RF 

models examined while the ROC curves from ED and LR models are relatively close. 

Based on the corresponding AUC value for each model, which provides a mean of 

quantification for the comparison of their performance, we can rank the models in 

increasing performance as follows: 0.77 (ED), 0.80 (LR), 0.90 (RF-ED) and 0.94 (RF-all).  20 

Based on these results, the choice of LR is justified relative to the use of a simple power-

law ED model, but it still remains inferior to the RF-based models for all threshold values 

examined. Comparison between RF-ED and ED models highlights the benefit of using a 

machine learning approach in predictive modeling. Considering that both these models are 

developed based on the same information (rainfall accumulation and duration), it is 25 

noteworthy how the technique involved random forest (in contrast to power law threshold) 

can impact the respective performance. 
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5.3 Comparison of predicted DF probabilities  

Thus far in the analysis, we have evaluated the predictive performance of the different 

models as binary classifiers (DF/noDF). This is meaningful when considering the 

operational context of a DF warning system, when the decision maker needs to take a 

binary decision (yes/no) for issuing for example a response protocol (e.g. evacuation plan). 5 

However, given that the LR and RF-based models provide a range of probabilities for DF 

occurrence, evaluating them only as a binary classifier does not allow us to understand in 

detail how the predicted DF probabilities differ between the LR and RF-based models. 

Therefore, to better investigate this aspect we have carried out a comparison of the DF 

probabilities predicted during the hold-one-out validation experiment (section 5.2), i.e. DF 10 

probability predicted for each event when using all other events for model training. Note 

that the ED model is a binary classifier and as such it cannot be included in the analysis 

presented in this section. 

 

The distribution of predicted DF probabilities for both DF and noDF events is presented in 15 

Figure 7 for LR, RF-ED and RF-all models. An ideal predictive model would be able to 

completely separate the probability values for DF and noDF event, with higher values 

(ideally equal to 1) for DF and lower values (ideally equal to 0) for noDF events. 

Considering Figure 7, this ideal performance would graphically result in no overlap of blue 

(noDF) and red (DF) boxplots. However, this is not the case as shown in Figure 7. The 20 

degree of overlap between DF and noDF boxplots is thus an indication of the performance 

of the models. Consistently with findings in previous sections, the RF-all model appears to 

have the best performance among the models considered. The main issues with the LR 

model relative to RF-based models is that the predicted probabilities for DF (noDF) events 

are underestimated (overestimated). Indicatively, the median values of DF (noDF) 25 

probabilities from LR, RF-ED and RF-all models are 0.32 (0.16), 0.47 (0.004) and 0.75 

(0.03) respectively. The net result of this under/overestimation of LR, is a considerable 

overlap of DF and noDF probabilities (Fig. 7). This essentially lowers the ability of binary 

classification as well, even if the threshold in probability is selected dynamically (see 

section 4.3). The RF-ED model exhibits the best performance in prediction of noDF events 30 
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(i.e. predicted the lowest probabilities) but the probabilities associated to DF events are still 

significantly underestimated with respect to RF-all model. 

 

6. Conclusions 

In this study, we evaluated the performance of four different models for post-fire debris 5 

flow prediction in western United States. The analysis was based on a dataset that was 

recently made available by USGS and the models involved included the current state-of-

the-art, which is a recently developed model based on logistic regression, a model based 

on rainfall accumulation-duration thresholds, considered as the simplest one followed in 

practice worldwide, and two models based on the random forest algorithm that were 10 

developed in this study. We investigated the relationship between prediction accuracy with 

model complexity and data requirements (in terms of both record length and variables 

required) of each model. According to the results from this analysis we found that the 

application of random forest technique leads to a predictive model with considerably 

improved accuracy in the prediction of post-fire debris flow events. This was attributed 15 

mainly to the ability of RF-based models to report lower values of false alarm rates and 

higher values of detection, which is a result of their ability to minimize the overlap between 

the probability space associated with DF and noDF events. The currently used LR model 

performed better than the simple ED model, but it was outperformed by both RF-based 

models, particularly as the training sample size increased. Increasing sample size has a 20 

profound effect on improving the median performance of RF-based models, while 

variability of the performance remained significant for all sample sizes examined, 

highlighting the importance of sampling uncertainty on the results. On the other hand, the 

LR and ED models exhibited minimal improvement in the median performance but more 

considerable reduction in the IQR with increasing sample size. Comparison between the 25 

two RF-based models suggests that even the model with significantly less data 

requirements (i.e. RF-ED) constitutes a relatively good predictor. Overall the more 

“complex” model (RF-all) exhibited the best performance. Analysis of sample size 

sensitivity showed that increasing data variables can lead to increasing performance, but, 



17 

 

this comes at a cost on data availability for properly training the more “data-demanding” 

models. The ROC analysis indicated that the performance of the various predictive models 

is highly related to the selection of thresholds. Selection of thresholds should be based on 

operator/stakeholder criteria who can identify the threshold according to the target TPR 

and tolerance at FPR of the prediction system at hand. 5 

Uncertainty is a very important element to consider when developing and evaluating 

predictive models of this nature. Two important sources of uncertainty pertain to estimation 

of input variables (e.g. rainfall, burn severity) and sampling. In this work, we implicitly 

demonstrated the impact of sampling uncertainty on model’s prediction skill through the 

random sampling exercise, but we did not account for uncertainty in input parameters. The 10 

impact of input parameter uncertainty will be a topic of future research.  Specifically, future 

work will be focused on examining the model performance using alternative sources of 

rainfall information (e.g. weather radar, satellite-based sensors and numerical weather 

prediction models) and further investigating how extra physiographic parameters (not 

included in existing database) can potentially improve predictive ability of models. In 15 

conclusion, although current findings provide a clear indication that random forest 

technique improves prediction of post-fire debris flow events, it is important to note that 

there may be other approaches (see for example Kern et al., 2017) that can offer additional 

advantages, therefore future investigations should expand also on the investigation of other 

machine learning or statistical approaches for developing post-fire debris flow prediction 20 

models. 
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Table 1 A summary of variables reported in the post-fire debris flow database. 

Variables Unit of measurement 

Hydrological response  (DF=1, noDF=0) 

Storm Duration  h 

Storm Accumulation  mm 

Average storm intensity mmh-1 

Peak 15-minute rainfall intensity (accumulation)  mmh-1 (mm) 

Peak 30-minute rainfall intensity (accumulation) mmh-1 (mm) 

Peak 60-minute rainfall intensity (accumulation)  mmh-1 (mm) 

Contributing Area  km2 

Proportion of upslope area with moderate or high dNBR and 

slope higher than 23° 

% 

Average differenced normalized burn ratio (dNBR) /1000 - 

Average KF Factor (soil erodibility index) - 

 

 

  5 
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Table 2 Total number and monthly distribution of DF and noDF events analyzed for 

Arizona, California, Colorado and New Mexico. Values per month correspond to 

percentage (%) of the total number of events (DF+noDF) analyzed per region. 

 

 Regions – US States 

 AZ CA CO NM 

Total number of 

DF (noDF) 

events 

7 (77) 201 (572) 31 (151) 35 (17) 

Jan 0 (0) 9.8 (31.7) 0 (0) 0 (0) 

Feb 0 (0) 2.7 (7.4) 0 (0) 0 (0) 

Mar 0 (0) 0 (1.9) 0 (0) 0 (0) 

Apr 0 (0) 0 (0) 0 (0) 0 (0) 

May 0 (0) 0 (0) 0 (0) 0 (0) 

Jun 0 (0) 0 (0) 1.1 (4.4) 0 (5.8) 

Jul 6 (47.6) 0 (0) 1.65 (0.55) 67.3 (26.9) 

Aug 2.4 (35.7) 0 (0) 7.14 (16.48) 0 (0) 

Sep 0 (8.3) 0 (0) 7.14 (60.44) 0 (0) 

Oct 0 (0) 0.8 (0.1) 0 (1.1) 0 (0) 

Nov 0 (0) 0.8 (4.4) 0 (0) 0 (0) 

Dec 0 (0) 11.9 (28.5) 0 (0) 0 (0) 

 5 

 

 

 

 

  10 
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Table 3 Description of variables included in the development of RF models. Symbol 

“X” denotes the variables that were included in each model. 

Variables 
RF models 

RF-ED RF-all 

Region class X X 

Rainfall accumulation (mm) X X 

Rainfall duration (h) X X 

Peak 15min rainfall (mm)  X 

Proportion of upslope area with moderate or 

high dNBR and slope higher than 23° 

 X 

Average differenced normalized burn ratio 

(dNBR) /1000 

 X 

Average KF Factor (soil erodibility index)  X 

 

 5 
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Table 4 Contingency table. 

  Observed 

  Debris Flow no Debris Flow 

Predicted 

 

Debris Flow  TP FP 

no Debris Flow  FN TN 
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Table 5 Relative Change (%) of TS distribution between 900 and 100 sample size. 

Relative Change (%), between 100 and 900 sample size  
Median IQR 

RF-ED +51 % -20 % 

RF-all +63 % 0.4 % 

Power Law - ED +7 % -25 % 

LR +11 % -19 % 

 

  5 
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Table 6 Relative difference of TS distribution between the reference model (LR) and 

the RF-ED, RF-all and ED models at the maximum sample size examined. Positive 

values denote increase of other models relative to LR. 

Relative Difference (%) reference to LR at 900 sample size  
Median IQR 

RF-ED +55 % +12 % 

RF-all +58 % +54 % 

Power Law - ED -3 % -17 % 

LR - - 

 5 
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Table 7 Model performance according to the thresholds based on maximization of TS. 

 
TPR FPR TS 

RF-ED 0.84 0.11 0.63 

RF-all 0.76 0.06 0.64 

Power Law - ED 0.78 0.31 0.41 

LR 0.77 0.29 0.41 
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Figure 1 Location of all post-fire debris flow records included in the USGS database. 

Note that all events in Utah and Montana were excluded from the analysis due to their 

incomplete record of variables. 
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Figure 2 Boxplot for (a) storm duration, (b) storm accumulation and (c) peak 15-min 

storm accumulation for Arizona (blue), California (green), Colorado (black) and New 5 

Mexico (red).  Dark (light) colors correspond to DF and noDF events. 
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Figure 3. (a) Total rainfall accumulation versus duration and (b) peak 15 minute 

rainfall accumulation versus duration for Arizona, California , Colorado and New 5 

Mexico. Colored dots and x symbols correspond to DF and noDF occurrence 

respectively. 
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Figure 4 Example plot demonstrating the (a) ED threshold and (b) probability 

threshold, for optimizing (i.e. maximizing TS) DF prediction. In (a), the αmaxTS 

corresponds to the optimum intercept parameter (see section 4.1.1) and in (b) the 5 

vertical black line identifies the probability value to optimize classification between 

DF and noDF events.  
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Figure 5 Sensitivity to sample size: boxplots of the Threat Score (TS), according to 

random sampling validation framework, for increasing sample size and for the 4 5 

models considered for post-fire debris flow prediction. 
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Figure 6 ROC curves for the hold-one-out validation technique for the four models. 

Circle symbols correspond to the model performance when selected thresholds were 

based on TS maximization. 5 
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Figure 7. Boxplots of predicted probability of DF occurrence for LR, RF-ED and RF-all 

models for both DF and noDF events. 
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