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Abstract. Landslide disaster is one of the main risks involved with the operation of long-distance oil and 14 

gas pipelines. Because previously established disaster risk models are too subjective, this paper presents 15 

a quantitative model for regional risk assessment through an analysis of the laws of historical landslide 16 

disasters along oil and gas pipelines. Using the Guangyuan section of the Lanzhou-Chengdu-Chongqing 17 

(LCC) Long-Distance Products Oil Pipeline (82km) in China as a case study, we successively carried out 18 

two independent assessments: a susceptibility assessment and a vulnerability assessment. We used an 19 

entropy weight method to establish a system for the vulnerability assessment, whereas a Levenberg 20 

Marquardt- Back Propagation (LM-BP) neural network model was used to conduct the susceptibility 21 

assessment. The risk assessment was carried out on the basis of two assessments. The first, the system 22 

of the vulnerability assessment, considered the pipeline position and the angle between the pipe and the 23 

landslide (pipeline laying environmental factors). We also used an interpolation theory to generate the 24 

standard sample matrix of the LM-BP neural network. Accordingly, a landslide susceptibility risk zoning 25 

map was obtained based on susceptibility and vulnerability assessment. The results showed that about 26 

70% of the slopes were in high-susceptibility areas with a comparatively high landslide possibility and 27 

that the southern section of the oil pipeline in the study area was in danger. These results can be used as 28 

a guide for preventing and reducing regional hazards, establishing safe routes for both existing and new 29 

pipelines and safely operating pipelines in the Guangyuan section and other segments of the LCC oil 30 

pipeline. 31 
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 33 

1. Introduction  34 

By the year 2020, the total mileage of long-distance oil and gas pipelines is expected to exceed 160,000 35 

km in China. This represents a major upsurge in the mileage of multinational long-distance oil and gas 36 

pipelines (Huo, Wang, Cao, Wang, & Bureau, 2016). The rapid development of pipelines is associated 37 

with significant geological hazards, especially landslides, which increasingly threaten the safe operation 38 

of pipelines (P. Wang et al., 2012; Yun & Kang, 2014; Zheng, Zhang, Liu, & Wu, 2012). Landslide 39 

disasters cause great harm to infrastructure and human life. Moreover, the wide impact area of landslides 40 

restricts the economic development of landslide-prone areas (Ding, Heiser, Hübl, & Fuchs, 2016; Hong, 41 

Pradhan, Xu, & Bui, 2015). A devastating landslide can lead to casualties, property losses, environmental 42 

damage and long-term service disruptions caused by massive oil and gas leakages (G. Li, Zhang, Li, Ke, 43 

& Wu, 2016; Zheng et al., 2012). Generally, pipeline failure or destruction caused by landslides is much 44 

more deleterious than the landslides themselves, which makes it important to research the risk assessment 45 

of geological landslide hazards in pipeline areas (Inaudi & Glisic, 2006; Mansour, Morgenstern, & Martin, 46 

2011). 47 

Natural disaster risk comprises a combination of natural and social attributes (Atta-Ur-Rahman & 48 

Shaw, 2015). The United Nations Department of Humanitarian Affairs expresses natural disaster risk as 49 

a product of susceptibility and vulnerability (Rafiq & Blaschke, 2012; Sari, Innaqa, & Safrilah, 2017). 50 

In recent years, progress in geographic information systems (GIS) and remote sensing (RS) technologies 51 



 

 

have greatly enhanced our ability to evaluate the potential risks that landslides pose to pipelines (Akgun, 52 

Kıncal, & Pradhan, 2012; B. Li & Gao, 2015; Sari et al., 2017). The disaster risk assessment model has 53 

been widely recognized and applied by experts and scholars all over the world. Landslide risk assessment 54 

can take the form of a qualitative (T. H. Wu, Tang, & Einstein, 1996), quantitative (Ho, Leroi, & Roberds, 55 

2000) or semi-quantitative assessment (Yingchun Liu, Shi, Lu, Xiao, & Wu, 2015) according to actual 56 

demand. Quantitative methods and models that have been proposed for the assessment can be divided 57 

into methods of statistical analysis (Sari et al., 2017), mathematical models (Akgun et al., 2012) and 58 

machine learning (He & Fu, 2009). However, most of these methods are subjective, such as expert 59 

evaluations, analytical hierarchy processes, logistic regressions and fuzzy integration methods, which 60 

could affect the accuracy and reasonableness of the evaluation (Fall, Azzam, & Noubactep, 2006; Sarkar 61 

& Gupta, 2005). This shortcoming can be overcome through the artificial neural network, especially the 62 

mature Back Propagation (BP) Neural Network that is widely used in function approximation and pattern 63 

recognition (Ke & Li, 2014a; P. L. Li, Tian, & Li, 2013; Su & Deng, 2003). The evaluation indicator 64 

system generally includes disaster characteristics, disaster prevention and pipeline attributes (Jianfeng 65 

Li, 2010; Shuiping Li, 2008). The fault tree analysis, fuzzy comprehensive evaluation and the grey theory 66 

are used to evaluate the failure probability of the system through indicator weight and scoring (Shi, 2011; 67 

Ye, Jiang, Yao, Xia, & Zhao, 2013). In previous studies, pipeline vulnerability evaluation indicators only 68 

considered the pipeline itself, and the relationship between the pipeline and environment was rarely 69 

examined (W. Feng, Zhang, & Zhang, 2014; Shuiping Li, 2008; Yingchun Liu et al., 2015). In this paper, 70 

the interaction between landslide hazards and the pipeline itself was considered, which improved the 71 

quantitative degree of the evaluation. 72 

Based on the theory of the LM-BP neural network, a standard sample matrix was developed using the 73 

interpolation theory after an analysis of the distribution characteristics of landslides that occurred in the 74 

study area was performed and a regional landslide susceptibility assessment was completed. Considering 75 

the interaction between landslide disasters and the pipeline itself, the pipeline vulnerability evaluation in 76 

the landslide area was realized using the entropy weight method. This paper established a risk assessment 77 

model and methods for assessing landslide geological susceptibility of oil pipelines by comprehensively 78 

utilizing GIS and RS technology, which together improved the quantitative degree of the assessment. 79 

2. Study Area 80 

The study area was Guangyuan City in the Sichuan province, which was further restricted to the area 81 

from 105°15  ́to 106°04 É and 32°03 t́o 32°45 Ń, straddling 19 townships in five counties from south to 82 

north (Figure 1). The Lanzhou-Chengdu-Chongqing (LCC) Products Oil Pipeline is China's first long-83 

distance pipeline. It begins in Lanzhou City and runs through the Shanxi and Sichuan provinces (Hao & 84 

Liu, 2008). Our study area covered sloped areas of the range with 5 km on both sides of the Guangyuan 85 

section (82 km) of the oil pipeline. The pipeline within the K558-K642 mileages may be affected by the 86 

slope areas. The Guangyuan section, located in northern Sichuan, is a transitional zone from the basin to 87 

the mountain. It features a terrain of moderate and low mountains, crisscrossed networks of ravines and 88 

a strong fluvial incision. Altitudes in this area range from 328 m to 1505 m. The study area has a 89 

subtropical monsoon climate with four distinctive seasons and annual precipitation measuring about 900 90 



 

 

mm to 1,000 mm. Moreover, two large unstable faults (the Central Fault of Longmen Mountain and 91 

Longmen Mountain's Piedmont Fault Zone) make the area geologically unstable and prone to frequent 92 

geological hazards (Shiyuan Li et al., 2012). Guangyuan, through which the pipeline passes, has a high 93 

incidence of landslides, some of which have happened 300 times in the Lizhou and Chaotian districts (Y. 94 

Zhang, Shi, Gan, & Liu, 2011). In this area, landslide geological hazards seriously threaten the safe 95 

operation of the LCC oil pipeline. 96 

3. Data Sources 97 

Landslide susceptibility assessment, pipeline vulnerability assessment and geological hazard risk 98 

assessment of the landslide pipeline were made successively. Digital elevation model (DEM) data with 99 

30 m accuracy was sourced from the Geospatial Data Cloud (http://www.gscloud.cn/). Precipitation data 100 

was downloaded from the dataset of annual surface observation values in China between the years 1981 101 

to 2010, as published by the China Meteorological Administration (http://data.cma.cn/). This data was 102 

collected from 18 meteorological observatories near and within the study area and interpolated using the 103 

kriging method (at a resolution of 30 m × 30 m). Geological maps and landslide data (historical landslides) 104 

in the study area were obtained from the Sichuan province’s geological environmental monitoring station. 105 

RS images (GF-1, multispectral 8 m, resolution 2 m) were provided by the Sichuan Remote Sensing 106 

Center. 107 

The location of the middle line of the pipeline was detected through the direct connection method (i.e., 108 

the transmitter's output line was directly connected to the metal pipeline) using an RD8000 underground 109 

pipeline detector. Pipeline midline coordinates were measured using total network Real Time Kinematic 110 

technology, and simultaneously, the coordinates of the pipe ancillary facilities (including test piles, 111 

mileage piles and milestones) were acquired. Mileage data obtained through inner pipeline detection was 112 

derived from the China Petroleum Pipeline Company. 113 

4. Methods 114 

4.1 Assessment unit 115 

Division precision and the scale of the slope unit (i.e., the basic element for a regional landslide 116 

susceptibility assessment) were in keeping with the results of the evaluation (Qiu, Niu, ZhaoYannan, & 117 

Wu, 2015). A total of 315 slope units were divided using hydrologic analysis in ArcGIS (v. 10.4) (Fig. 118 

2a). The irrational unit was artificially identified and modified by comparing GF-1 satellite remote 119 

sensing images. Boundary correction, fragment combination and fissure filling were used for 120 

modification. 121 

The object of the pipeline vulnerability assessment in the landslide area was the pipeline. 122 

Considering both previous research and the particulars of the research object, we used a comprehensive 123 

segmentation method based on GIS to divide the pipelines in our study. A total of 180 pipes were 124 

divided in the study area, of which the longest was about 1.7 km, and the shortest was only about 10 m 125 

(Fig. 2b). 126 

4.2 Assessment indicators 127 



 

 

Based on selection principles of the indicator system and the formation mechanism of landslide 128 

geological hazards, as few indicators as possible were selected to reflect the degree of danger posed by 129 

the landslide as accurately as possible (Avalon Cullen, Al-Suhili, & Khanbilvardi, 2016; Jaiswal, Westen, 130 

& Jetten, 2010; Ray, Dimri, Lakhera, & Sati, 2007). The internal factors in these indicators of the paper 131 

included topography, geological structure, stratigraphic lithology and surface coverage. Similarly, the 132 

external factors included mean annual precipitation (MAP) and the coefficient of the variation of annual 133 

rainfall (CVAR). The correlations between indicators were analyzed using R (v. 3.3.1), and the results 134 

showed a significant correlation between MAP and CVAR (R = 0.99) and between NDWI and NDVI (R 135 

= 0.87). Based on correlation and standard deviation, CVAR and NDWI were eliminated from the 136 

original evaluation system for landslide susceptibility assessment in the pipeline area (Table 1). 137 

Generally, the evaluation indicator of pipeline vulnerability as it relates to the relationship between a 138 

pipeline and its surrounding environment is rarely considered. The evaluation indicators in this paper 139 

were refined to include pipeline parameters and the spatial relationship between a pipeline and landslide. 140 

The pipelines in the study area were based in mountainous areas and had been running for many years. 141 

All of these pipelines consisted of high-pressure pipes that were made of steel tubes and had a diameter 142 

of 610 mm for conveying oil. In keeping with the theory of the entropy weight method, these indicators 143 

(e.g., pressure, materials, diameter and media) were not included in the final evaluation system used to 144 

determine pipeline vulnerability. 145 

4.3 LM-BP neural network Model 146 

The neural network, an abstract model of our brain, constructs calculating units connecting with one 147 

another. Neural network has an input layer, a hidden layer and an output layer. With its good performance 148 

on nonlinear statistical modeling, it is very useful in exploring the hidden relationships between the inputs 149 

and the outputs (Z. Wu & Wang, 2016).BP Neural network with many adjustable parameters has 150 

powerful parallel processing mechanism, high flexibility and is good at dealing with a lot of uncertain 151 

information. The mechanism of landslide evaluation is complex, with many uncertainties and incomplete 152 

information (Jie et al., 2015). The BP neural network model can find out the intrinsic rules from the vast 153 

amount of complex and fuzzy data in the changing environment and make corresponding inferences. 154 

This method can be applied to the landslide susceptibility assessment of pipeline area with more 155 

qualitative information and less quantitative information, and the more accurate assessment results can 156 

be obtained from the analysis of these fuzzy information. Landslide susceptibility assessment is 157 

essentially a study of pattern recognition (F. Feng, Wu, Niu, Xu, & Yu, 2017). BP neural network can 158 

approximate arbitrary continuous function with arbitrary precision, so it is widely used in non-linear 159 

modeling, pattern recognition and pattern classification (Xiong, Ran, Xiong, Li, & Ye, 2010). Because 160 

the BP neural network model is widely used, there are many successful cases for reference in the number 161 

of neurons in each layer, the parameters of network learning and the optimization of algorithms, which 162 

can effectively improve the reliability and accuracy of the model(Ke & Li, 2014b). 163 

The LM algorithm, also known as the damped least square method, has the advantage of local fast 164 

convergence. Its strong global searching ability contributes to the strong extrapolation ability of the 165 

trained network. LM algorithm is a combination of gradient descent method and Gauss-Newton 166 



 

 

method. Its iteration process is no longer along a single negative gradient direction, which greatly 167 

improves the convergence speed and generalization ability of the network (Jing Li, Feng, Wang, & 168 

Zhang, 2016). The BP neural network model, optimized by the LM algorithm, was used to evaluate the 169 

regional landslide susceptibility in this study. MATLAB 2014 with the trainlm training function was used 170 

to implement the LM-BP neural network. The flow chart of LM-BP neural network algorithm is shown 171 

in Figure 3. 172 

Data from 106 landslide disasters was collected near the research area. Of these landslides, 23 were 173 

within the region of the study area. Most of the landslides located outside the study area were less than 174 

20 km away from the pipeline. Due to comparable environmental conditions, these landslides could still 175 

help us identify the relationship between landslides and environment factors. In light of the frequency 176 

distribution of each evaluation indicator (Fig. 4), the landslide susceptibility grade corresponding to each 177 

interval of the indicators was divided, and then the susceptibility degree monotonicity in each interval 178 

was decided. For this study, the landslide susceptibility grade was divided into four levels: low (I), 179 

medium (II), high (III) and extremely high (IV). Based on previous research experience and field 180 

investigations (Appendix 8), the monotonous intervals of different indicators of susceptibility degrees 181 

were judged (Appendix 1). For instance, there were hardly any landslides, only collapses that occurred 182 

in slopes above 60 degrees. Besides, the susceptibility degree in the area was monotone decreasing in 183 

the interval of [60, 90]. Because of the very small sliding force in a slope at 0 degrees to 15 degrees, 184 

landslides were rare to occur here, even under other extreme conditions. (Q. Zhang, Xu, Wu, & Li, 185 

2015).On the basis of the classification criteria of the evaluation indicators used to predict landslide 186 

susceptibility degree and the functional relationship between the evaluation indicators and landslide 187 

probabilities, standard samples (training samples and test samples) were built using a certain 188 

mathematical method. According to the order of susceptibility from low to high, Interpolation was 189 

performed in each interval and the sample vectors of each evaluation indicator were constructed. Each 190 

200 is a susceptibility level, and the sample vector length of each evaluation indicator is 800. The interval 191 

of the susceptibility degree is [0, 1], and the output vector is obtained by interpolating 800 values 192 

equidistantly between the interval of [0, 1]. Sample matrix is built by interpolation theory, which avoids 193 

the excess human influence in the process of building neural network model by traditional methods. The 194 

training samples and test samples were evaluated using similar construction methods but with different 195 

sample sizes. Finally, the indicator data was normalized, it was entered into the LM-BP neural network 196 

for simulation and 315 slope unit landslide susceptibility values were output. 197 

4.4 Vulnerability assessment model for pipelines 198 

The vulnerability evaluation model of pipelines in the landslide area was established using the entropy 199 

weight method, which overcame the shortcomings of the traditional weight method that does not consider 200 

the different evaluation indicators and the excessive human influence on the process of evaluation (Gao, 201 

Li, Wang, Li, & Lin, 2017; Pal, 2014). Entropy is a method of measuring the uncertainty of information 202 

by using probability theory (P. Liu & Zhang, 2011). The entropy indicates the extent of difference in an 203 

indicator, and the more difference of the data, the greater the role in evaluation (Jia, Zhao, Nan, & Zhao, 204 

2007). The extremum difference method was used to normalize each indicator value. The decision 205 



 

 

information of each index can be expressed by entropy value ei: 206 
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  (5) 211 

where n is the number of evaluation objects, and rij represents the ith evaluation indicator values of jth 212 

pipe sections. Hj is the evaluation value of the pipeline section’s vulnerability; wi is the weight of the 213 

evaluation indicator;  214 

Pipeline defect density was obtained from the pipeline internal inspection data, which consisted of 215 

both mileage data that needed to be converted into three-dimensional coordinate data and pipeline center 216 

line coordinate data obtained through C# programming. In addition, the main slide direction of the 217 

landslide was replaced by the slope direction that was extracted by DEM. The coordinate azimuth of the 218 

pipe section was extracted using the linear vector data of each pipe section, and the angle between the 219 

pipeline and the slope was calculated using the mathematical method. The calculation process was solved 220 

in the VB language on ArcGIS using second development functions. Finally, the entropy weight of 5 221 

indicators was calculated by programming in MATLAB 2014. The entropy weight calculation results for 222 

pipeline landslide vulnerability assessment are shown in Table 2. 223 

 224 

5 Results and Comparison 225 

5.1 Regional landslide susceptibility assessment 226 

The LM-BP neural network was trained and the network was stopped after 182 iterations. An RMSE 227 

value of 9.93e-09 indicated that the goal of precision had been reached. Through the simulation of the 228 

network test, none of the absolute error values of test data (20 groups) were found to be greater than 0.02; 229 

this result aligned with our expectation of the precision of the landslide susceptibility assessment. The 230 

landslide susceptibility grade was divided into four levels by using the equal interval method at intervals 231 

of 0.25. The safe section (low susceptibility) was located in the central part of the study area. The 232 

dangerous (high susceptibility) section was located north and south (Fig. 5). In the study area, most of 233 

the exposed rock was dominated by shale, which belonged to the easy-slip rock group. 234 



 

 

Average altitude ranged from 450 m to 1400 m, and the relative height difference was greater than 80 235 

m, with the slope between 15° and 35°. Based on an overlay analysis of historic landslides within the 236 

study area, and susceptibility zonation maps, we surmised that the probability of landslides in the study 237 

area was extremely high, and that 87% of the landslides occurred in the medium-, high-, and extremely 238 

high-susceptibility areas. Among these landslides, three were located in low-susceptibility areas, which 239 

accounted for 13% of the landslide disaster sites, five occurred in medium-susceptibility areas 240 

(accounting for 21.7% of disaster sites), seven occurred in high-susceptibility areas (accounting for 30.4% 241 

of sites) and eight occurred in extremely high-susceptibility areas (accounting for 34.8% of sites). The 242 

evaluation results were found to accurately reflect the trends and rules of distribution of landslides in the 243 

study area. The number and area of slopes in high-susceptibility and extremely high-susceptibility areas 244 

accounted for about 70% of the total (Table 3). The probability of landslide occurrence in the study area 245 

was generally high, which was consistent with the fact that the region was landslide-prone. 246 

5.2 Vulnerability assessment for oil pipeline in landslide area 247 

The equal interval of 0.25 was used to divide the pipeline vulnerability level into four grades to obtain 248 

the pipeline vulnerability zonation of the study area (Fig. 6). The pipeline in the northern part of the study 249 

area was given a low vulnerability grade, while the situation in the south of the region is more serious. 250 

The number, length and percentage of pipeline segments with different grade vulnerabilities are shown 251 

in Table 4. The number and length of pipeline segments in highly vulnerable areas (III) and extremely 252 

vulnerable areas (IV) accounted for about 12% of the total. 253 

5.3 Risk assessment for oil pipeline in landslide area 254 

According to natural disaster risk expressions released by the UN, the definition of risk may be expressed 255 

as the product of landslide susceptibility in a pipeline area and pipeline vulnerabilities in the landslide 256 

area. Scientific analysis and expression of disaster risk assessment results can simplify complex risk 257 

assessment and make the micro results macro (Ding & Tian, 2013). There is no unified criterion for 258 

disaster evaluation zoning, and the equal interval method is one of the methods to express the results 259 

more intuitively (H. Hu, Dong, & Pan, 2011; Jin & Meng, 2011; Y. Wang, Hao, Zhao, & Fang, 2011). 260 

The susceptibility degrees and vulnerability degrees were distinguished using the equal interval method, 261 

and four risk grades were then automatically generated. Where the comprehensive risk assessment value 262 

was within 0 to 0.0625, the corresponding risk grade was Grade I; the corresponding risk grades with the 263 

values of 0.0625 to 0.25, 0.25 to 0.5625 and 0.5625 to 1.0 were Grade II, III and IV, respectively. The 264 

risk grade of each section of the pipeline within the research area is shown in Fig. 7. 265 

The number of sections with a high-risk grade was 33, which accounted for 18.33% of all pipeline 266 

sections and represented 16.57% of the total pipeline length of 13.461 km). There were 4 sections with 267 

extremely high-risk grade, which accounted for 2.22% of all sections and represented 3.31% of the total 268 

pipeline length of 2.538 km. The section number and length of pipelines lying in high-risk (III) and 269 

extremely high-risk (IV) areas accounted for 20% of the total pipeline length, and the risk grade of 270 

pipelines inside Qingchuan and Jian’ge County was relatively high. 271 

5.4 Analysis of risk assessment results 272 



 

 

Large or huge landslides were common in areas that we categorized as extremely high risk, which we 273 

defined as those that were geologically evolving or had experienced obvious deformations within the last 274 

2 years with still visible cracks. These pipelines were subject to dangers at any time, as the pipelines 275 

within the areas prone to landslides were found to contain many defects or extensive damage. These 276 

areas also posed considerable threats; for example, pipeline ruptures or breaks could lead to leakages or 277 

serious deformations that cause transportation failure. Because these are unacceptable events, risk 278 

prevention and control measures must be taken in a short time. Pipelines with extremely high risk were 279 

mainly distributed in the following areas: (1) Xiasi Village in Xiasi County (Pile No. K628-K630); (2) 280 

Shiweng Village-Maliu Village of Xiasi County (Pile No. K635-K637). This section lay in the south of 281 

the research area, with an altitude of 500 m to 750 m. Here, the slope conditions affected the distribution 282 

of groundwater pore pressure and the physical and mechanical characteristics of the rock and soil in three 283 

areas: vegetation cover, evaporation and slope erosion. Ultimately, these three factors affected slope 284 

stability (Luo & Tan, 2011). Vertical and horizontal ravines have also been seen in this section, with 285 

a relative height difference greater than 100 m and slop between 15° to 35°. Slope degrees with 286 

obvious changes had a great influence on slope stability (Chang & Kim, 2004; W. Hu, Xu, Wang, Asch, 287 

& Hicher, 2015). The exposed rocks in this area were mainly shale and belonged to the sliding-prone 288 

rock group. Rock type and interlayer structure were found to be important internal indicators that a 289 

landslide could occur (Guzzetti, Cardinali, & Reichenbach, 1996; Xiang et al., 2010; Xin, Chong, & 290 

Dai, 2009). The distance between the fault and the pipeline in the section was about 2 km with a 291 

NDVI of about 0.75 and MAP of about 970 mm. Faulted zones and nearby rock and earth masses 292 

that were destroyed in a geologic event reduced the integrity of a slope, and the faults and important 293 

groundwater channels could also cause deformation and damage of a slope (Yinghui Liu, 2009). The 294 

pipelines in these areas exhibited many defects. Most pipelines passed through the slope in an inclined 295 

or horizontal way, an attribute that typically increased the risk of a landslide occurring.  296 

In high-risk areas, small or moderate landslides commonly occurred in areas that we categorized as 297 

high risk. They were in deformation, or had obvious deformation recently (within 2 years), such as 298 

obvious cracks, subsidence or tympanites on the landslide and even shear. The pipelines in these areas 299 

had defects and were buried at a shallow depth. If a landslide occurred in this pipeline area, it could cause 300 

pipe suspension, floating and damage. It could also contribute to a small to moderate leakage of the 301 

medium. However, damaged pipes can be welded or repaired. Monitoring is critical in high-risk areas. 302 

In our study, the pipeline high-risk area was defined by the following areas: (1) Xiasi Town Xiasi Village-303 

Shiweng Village (pipe No. K622-K633). (2) Xiasi Town Maliu Village Jinzishan Xiangdasang Village 304 

(pipe No. K635-K642). This area was located in the south of the pipe, which was buried in the study area. 305 

The altitude of the study area was between 450 m and 800 m, the relative elevation difference was over 306 

100m and the slope was between 15° and 40°. Most of the outcrops in this area were quartz sandstone, 307 

which belonged to the easy-sliding rock group. The pipes in this area were about 2.5 km away from faults. 308 

The NDVI was about 0.6 to 0.8, and MAP was about 970 nm. Pipes showed many defects, most of them 309 

either crossing the slope or lying in the center of slope. All of the above factors provided sufficient 310 

conditions for the formation of landslide. 311 

In the medium-risk areas, only small landslides were found to occur, and we observed no sign of 312 



 

 

deformation. But through the analysis of geological structure, topography and landform, we found the 313 

area to demonstrate a tendency for developing landslides. The pipes in this risk area exhibited almost no 314 

faults and were buried deep beneath the ground. However, under bad conditions, the landslides in these 315 

areas could also affect the pipes' safety, causing the pipes to become exposed or deformed. These areas 316 

need simple monitoring. For our study, medium-risk areas were defined as follows: (1) Sanlong village 317 

of Dongxihe township-Panlong town Dongsheng village (pipe No. K559-K593). (2) Panlong town 318 

Qinlao village-Wu'ai village (pipe No. K595-K597). (3) Baolun town Laolin'gou village-Xiasi town 319 

Youyu village (pipe No. K599-K630). 320 

In the low-risk areas, landslides didn’t occur under ordinary conditions, but they could occur if a strong 321 

earthquake hit or if the area experienced continuous or heavy rain. The pipes in low-risk areas showed 322 

no defects and were buried very deep. They were also located far away from areas affected by landslides. 323 

Therefore, landslides in these areas caused no obvious damage to the pipes, and few threatened the safety 324 

of pipes. However, regular inspection is necessary to ensure that the pipes continue to operate safely. The 325 

pipe low-risk area were defined as follows: (1) Panlong town Dongsheng village-Qinlao village (pipe 326 

No. K591-K597). (2) Baolun town Xiaojia village-Baolun town Laolin'gou village (pipe No. K599-327 

K608). 328 

Through comprehensive analysis of each risk level area, we compiled a list of pipeline landslide risks 329 

(Table 6). This list describes each landslide risk level in four respects: pipeline risk, landslide 330 

susceptibility, pipeline vulnerability and risk control measures. 331 

The main purpose of this study was to provide managers and planners with a comprehensive 332 

assessment of landslide risk in pipeline area. The results offer information on the possibility of failure of 333 

slopes or even pipelines in an area in the future, rather than the area that may be damaged by landslides. 334 

The landslide susceptibility maps could help planners reorganize and plan future pipeline construction. 335 

Pipeline vulnerability maps could assist engineers for pipeline maintenance operation. Based on this final 336 

risk map, managers and engineers can then make decisions and formulate prescriptions that will have 337 

highly predictable results for safely transporting medium, settlement relocation, and significantly 338 

reducing risk of any adverse effects. 339 

Future research could explore detailed comparison of different methods, and finalize an optimal 340 

method. Moreover, it is possible that the information needed for the landslide risk assessments can be 341 

obtained by simple and effective ways, if plan to build database. Meanwhile, the landslide risk 342 

assessment model can be designed as dynamic systems, as the developments in computer and GIS 343 

technologies. The system predicts possible future landslides or pipeline damaged by inputting the 344 

information obtained in the database, and various adjustment factors. 345 

 346 

6 Conclusion  347 

The faults inherent to traditional landslide risk assessment include excessive human influence, failure of 348 

pipeline vulnerability assessments to consider the interaction between landslide disaster and pipeline 349 

ontology and the low quantification degree of risk assessment results.  350 

Taking the Guangyuan section (82 km) of the LCC oil and gas pipeline as an example, we used GIS 351 



 

 

and RS technology to establish a regional landslide susceptibility assessment model based on the LM-352 

BP neural network. We determined that there were 112 and 108 slopes in high-susceptibility and 353 

extremely high-susceptibility areas that accounted for 33.18% and 40.46% of the total area of the study 354 

area, respectively. Then, we established the model of pipeline vulnerability evaluation based on the 355 

entropy weight method by combining the pipeline body and the environmental information. The number 356 

and length of pipe segments in the highly vulnerable (III) and extremely vulnerable area (IV) accounted 357 

for about 12% of the total. Finally, based on the susceptibility assessment and the vulnerability 358 

assessment, we completed the risk assessment and risk division of the oil pipeline, thus forming a 359 

geological disaster risk assessment model and a method for oil pipeline and landslide risk assessment. 360 

The risk assessment results demonstrated that the number and length of high-susceptibility and extremely 361 

high-susceptibility pipeline segments represented 20% of the total. Similarly, the pipeline risk within 362 

Qingchuan and Jian’ge Counties was relatively high. Our pipeline landslide risk assessment has laid a 363 

foundation for the future study of pipeline safety management and pipeline failure consequence loss 364 

assessment. 365 
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Table 1 546 

 Factor Indicators 
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Landform 

Elevation 

Slope 

Aspect 

Height Difference 

Topographic profile curvature (TPC) 

Land cover 
NDVI 

NDWI 

Geology 
Lithology 

Distance from the fault 
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Mean annual precipitation (MAP) 

Coefficient of variation of annual rainfall 

(CVAR) 
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Defect Density 
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Spatial relationship between pipeline and 
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Table 2  564 

 Depth Angle Defect Density Thickness Position 

Weight 0.010007 0.101553 0.678851 0.154322 0.055266 

Entropy 0.997322 0.97282 0.818308 0.958696 0.985208 
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Table 3  567 

Landslide 

susceptibility  

Number of 

slopes 
Percentage (%) Area (km2) Percentage (%) 

Low (I) 33 10.48 32.63 8.76 

Medium (II) 62 19.68 65.53 17.60 

High (III) 112 35.56 123.55 33.18 

Extremely high (IV) 108 34.29 150.65 40.46 

Total 315 100 372.36 100 

 568 
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Table 4 570 

Pipeline vulnerability 
Number of 

pipelines 
Percentage (%) Area (km2) Percentage (%) 

Low (I) 120 66.66 50.417 62.06 

Medium (II) 37 20.56 20.888 25.72 

High (III) 22 12.22 9.833 12.11 

Extremely (IV) 1 0.56 0.087 0.11 

Total 180 100 81.225 100 

 571 

  572 



 

 

Table 5  573 

Pipeline risk 
Number of 

pipelines 
Percentage (%) Area (km2) Percentage (%) 

Low (I) 37 20.56 14.469 17.81 

Medium (II) 106 58.89 50.757 62.49 

High (III) 33 18.33 13.461 16.57 

Extremely (IV) 4 2.22 2.538 3.13 

Total 180 100 81.225 100 
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Table 6 576 

Pipeline 

risk 

Landslides 

susceptibility 
Vulnerability Risk 

Control 

measures 

Low (I) The landslide won't 

happen under ordinary 

conditions, but it will 

occur when strong 

earthquake, long 

continuous rain or 

extremely heavy rain 

happened. 

The pipes in low 

risk areas have no 

any defects and 

buried very deep. 

Meanwhile, they 

are far away from 

the area affected by 

landslide. 

Landslides have no 

obvious damage to 

the pipes, and few 

threats to pipes' 

safety. 

Regular 

Inspection 

Medium 

(II) 

Small landslide 

mainly occur, and no 

sign of deformation. 

But through analyzing 

geological structure, 

topography and 

landform, there is a 

tendency of landslide. 

The pipes in risk 

areas have almost 

no faults and buried 

deep. However, 

under bad condition, 

the landslide may 

also affect the pipes' 

safety. 

The landslide 

may make the pipes 

exposed or 

deformation. simple 

monitoring 

High (III) Landslides are most in 

medium-model and 

little-model, and they 

are in deformation, or 

have obvious 

deformation recently, 

such as obvious 

cracks, subsidence or 

tympanites on the 

landslide and even 

shear. 

The pipeline has 

defects, and buried 

shallow. Once 

landslides occurred 

in the pipeline area, 

pipes' safety will be 

threatened 

The safety of pipeline 

will be threatened 

and may suffer from 

pipe suspension, 

floating, and damage 

etc. Therefore it will 

contribute to a small 

amount of medium 

leakage. Fortunately, 

the pipe can be 

welded or repaired. 

Main 

monitoring 

Extremely 

high (IV) 

Large or huge 

landslide is common 

in the area with 

extremely high risk, 

which is changing or 

has experienced 

obvious deformation 

recently with visible 

cracks. 

The pipelines are 

subject to dangers at 

any time as the 

pipelines within the 

area prone to 

landslide have been 

spotted with many 

defects or much 

damage. 

There are great 

threats, for example 

pipeline rupture or 

break and may lead 

to considerable 

leakage of media or 

serious deformation 

even transportation 

failure. 

Prevention 

and control 

measures 

shall be taken 

in a short 

time 
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Appendix 1 Classification of landslide susceptibility grade corresponding to different intervals 605 

Factor Indicators Interval 

Susceptibility 

degree 

monotonicity 

Susceptibility 

level 

Landform 

Elevation 

[1000 , Highest]  Decreasing 
Low 

susceptibility(I) 

[Lowest , 600) Increasing 
Medium 

susceptibility(II) 

[800 , 1000)  Decreasing 
High 

susceptibility(III) 

[600 , 700) ∪[700 , 800) 
Increasing, 

Decreasing 

Extremely high 

susceptibility(IV) 

Slope 

[60 , 90)  Decreasing 
Low 

susceptibility(I) 

[0 , 15) Increasing 
Medium 

susceptibility(II) 

[30 , 60)  Decreasing 
High 

susceptibility(III) 

[15 , 20)∪[20 , 30) 
Increasing,  

Decreasing 

Extremely high 

susceptibility(IV) 

Aspect 

 

 

[0 , 45) ∪[270 , 360) 
Increasing,  

Decreasing 

Low 

susceptibility(I) 

[225 , 270)∪[45 , 90) 
 Decreasing, 

Increasing 

Medium 

susceptibility(II) 

[90 , 135) ∪[180 , 225) 
Increasing,  

Decreasing 

High 

susceptibility(III) 

[135 , 157.5) ∪[157.5 , 180) 
Increasing,  

Decreasing 

Extremely high 

susceptibility(IV) 

Height 

difference 

[Lowest , 100) Increasing 
Low 

susceptibility(I) 

[900 , Highest] ∪[100 , 200) 
 Decreasing, 

Increasing 

Medium 

susceptibility(II) 

[600 , 900) ∪[200 , 300) 
 Decreasing, 

Increasing 

High 

susceptibility(III) 

[300 , 450)∪[450 , 600) 
Increasing,  

Decreasing 

Extremely high 

susceptibility(IV) 

topographic 

profile 

curvature 

[Lowest , -0.025) Increasing 
Low 

susceptibility(I) 

[0.025 , Highest]  Decreasing 
Medium 

susceptibility(II) 

[-0.025 , -0.01)∪[0.01 , 0.025) 
Increasing,  

Decreasing 

High 

susceptibility(III) 

[-0.01 , 0)∪[0 , 0.01) 
Increasing,  

Decreasing 

Extremely high 

susceptibility(IV) 

Land cover NDVI 

[-1,0) Increasing 
Low 

susceptibility(I) 

[0,0.6)∪[0.9,1] 
Increasing,  

Decreasing 

Medium 

susceptibility(II) 

[0.6,0.7)∪[0.8,0.9) 
Increasing,  

Decreasing 

High 

susceptibility(III) 

[0.7,0.75)∪[0.75,0.8) 
Increasing,  

Decreasing 

Extremely high 

susceptibility(IV) 

Precipitation 
Mean annual 

precipitation 

[1100 , Highest)  Decreasing 
Low 

susceptibility(I) 

[Lowest , 960) Increasing 
Medium 

susceptibility(II) 

[990 , 1100)  Decreasing 
High 

susceptibility(III) 

[960 ,975)∪[975 , 990) Increasing,  Extremely high 



 

 

Decreasing susceptibility(IV) 

Geology 
Distance from 

the fault 

[20, Highest]  Decreasing 
Low 

susceptibility(I) 

[15 , 20)  Decreasing 
Medium 

susceptibility(II) 

[5 , 15)  Decreasing 
High 

susceptibility(III) 

[0 ,5)  Decreasing 
Extremely high 

susceptibility(IV)  

606 



 

 

Appendix 2 Standard training sample matrix and standard test sample matrix 607 

Sample type ID 

Input 

Output 
Aspect Slope Elevation NDVI MAP Height Difference TPC Distance Lithology 

Training sample 

1 0.2 89.9 438 -1 908.1 33 -0.582 25 1 0 

50 35.2 82.8 453 0 912.2 79 -0.456 23.47 1 0.06 

100 297.1 75.7 469 0.88 916.3 115 -0.33 21.9 1 0.12 

150 329.3 67.6 485 0.95 920.4 167 -0.168 20.34 1 0.19 

200 359.5 60 499 1 924.9 200 0.628 18.77 1 0.25 

250 68.4 3.8 1293 0.73 930.4 1097 0.486 17.21 2 0.31 

300 89.3 8.2 1206 0.65 938 1039 0.326 15.64 2 0.37 

350 246 12 1102 0.56 943.6 977 0.183 14.08 2 0.44 

400 269.3 15 1002 0.5 949.8 902 -0.142 12.52 2 0.5 

450 113.4 52.9 952 0.46 960.6 848 -0.018 10.95 3 0.56 

500 134.8 46.3 905 0.4 972.6 757 -0.012 9.39 3 0.62 

1 27.2 72.3 458 0.8 911.6 59 -0.544 25 1 0 

Test sample 

2 28.5 71.6 468 0.81 914.3 74 -0.453 23.69 1 0.06 

3 31.5 69.5 488 0.85 915.8 86 -0.381 22.37 1 0.11 

4 37.8 66.2 490 0.86 917.1 100 -0.228 21.06 1 0.16 

5 38.6 62.1 497 0.86 919.1 152 -0.03 19.74 1 0.22 

6 56.1 4.4 1141 0.7 934.2 939 0.439 18.43 2 0.27 

7 57.3 6.6 1240 0.68 939.6 941 0.429 17.11 2 0.32 

8 65.3 9.8 1257 0.66 945.1 1124 0.413 15.79 2 0.37 

9 68.2 11 1290 0.56 948.8 1135 0.318 14.48 2 0.43 

10 74.7 11.9 1382 0.53 949.9 1146 0.148 13.16 2 0.48 

11 92.4 30.4 848 0.47 963.4 613 -0.019 11.85 3 0.53 

12 92.7 31.8 853 0.45 970.5 683 -0.016 10.53 3 0.58 

13 101.9 44.7 900 0.45 980.5 737 -0.015 9.22 3 0.64 



 

 

14 110.1 50.9 917 0.35 987 817 -0.015 7.9 3 0.69 

15 115.6 57.5 933 0.32 994.2 835 -0.015 6.58 3 0.74 

16 140.6 15.6 502 0.14 1001.5 245 0.019 5.27 4 0.79 

17 155.4 20 626 0.14 1002.3 256 0.008 3.95 4 0.85 

18 157.1 24.8 690 0.08 1010.6 293 0.007 2.64 4 0.9 

19 177.6 27.3 765 0.06 1012.7 392 0.004 1.32 4 0.95 

20 178.3 29.6 795 0.04 1022.7 446 0.001 0 4 1 
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Appendix 3 Test error of LM-BP neural network 610 

Number Expected value network output error 

1 0 0.0006 0.0006 

2 0.06 0.0548 -0.0052 

3 0.11 0.1113 0.0013 

4 0.16 0.1699 0.0099 

5 0.22 0.2302 0.0102 

6 0.27 0.2614 -0.0086 

7 0.32 0.315 -0.005 

8 0.37 0.3697 -0.0003 

9 0.43 0.4266 -0.0034 

10 0.48 0.4899 0.0099 

11 0.53 0.5153 -0.0147 

12 0.58 0.5765 -0.0035 

13 0.64 0.6405 0.0005 

14 0.69 0.701 0.011 

15 0.74 0.7523 0.0123 

16 0.79 0.8094 0.0194 

17 0.85 0.8616 0.0116 

18 0.9 0.9155 0.0155 

19 0.95 0.9675 0.0175 

20 1 1.0173 0.0173 
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Appendix 4 Coordinates of the center line and ancillary facilities of the pipeline 612 

Point number Previous point Material 

 

Diameter 

(mm) 

Pressure Depth 

(m) 

Coordinate elevation 

X Y H 

Marker peg -- --  --  --  ···576.265 ···4357.849 503.877 --  

GD1.421 GD1.420 Steel  168 high 2.2  ···572.111  ···4352.109  504.235  502.035  

GD1.422 GD1.421 Steel  168 high 1.9  ···571.837  ···4336.010  503.866  501.966  

GD1.423 GD1.422 Steel  168 high 2.1  ···571.538  ···4319.679  503.694  501.594  

GD1.424 GD1.423 Steel  168 high 2.1  ···571.093  ···4308.825  503.510  501.410  

GD1.425 GD1.424 Steel  168 high 2.0  ···570.718  ···4288.141  503.733  501.733  

Detective pole K566 -- --  --  --  ···575.536 ···4284.069 503.494 --  

GD1.426 GD1.425 Steel  168 high 2.3  ···570.603  ···4275.147  503.998  501.698  

Mileage peg K566+200 -- --  --  --  ···574.641 ···4258.41 503.224 --  

GD1.427 GD1.426 Steel  168 high 2.0  ···570.222  ···4258.593  503.710  501.710  

GD1.428 GD1.427 Steel  168 high 1.6  ···570.090  ···4247.642  503.283  501.683  

GD1.429 GD1.428 Steel  168 high 2.3  ···569.458  ···4216.618  502.468  500.168  

GD1.430 GD1.429 Steel  168 high 2.9  ···569.043  ···4208.558  504.055  501.155  

 613 
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Appendix 5 Internal detection data of pipeline 623 

FID Pipe number distance(m) Feature type Remarks Length (mm) thickness (mm) 

1 10 6.408 Pipe segment  Spiral weld  652 11.1 

2 20 7.060 Pipe segment  -- 1178 -- 

3 20 7.648 Fixed punctuation point  Valve centerline  -- -- 

4 20 7.650 Valve centerline  -- -- 

5 30 8.238 Pipe segment  Spiral weld  768 11.1 

6 40 9.006 Pipe segment  -- 2184 -- 

7 40 10.100 Globular tee centerline  -- -- 

8 50 11.190 Pipe segment  Spiral weld  1700 11.1 

9 50 11.445 Pit -- 548 11.1 

10 60 12.890 Pipe segment  Straight weld  2342 13.6 

11 60 12.890 Wall thickness variation  from 11.1mmto 13.6mm -- -- 

13 70 15.232 Pipe segment  Spiral weld  1999 11.1 

14 70 15.232 Wall thickness variation  from 13.6mmto 11.1mm -- -- 

15 80 17.231 Pipe segment  Straight weld  2352 13.4 

16 80 17.231 Wall thickness variation  from 11.1mmto 13.4mm -- -- 

18 90 19.583 Pipe segment  Spiral weld  11557 11.1 

19 90 19.583 Wall thickness variation  from 13.4mmto 11.1mm -- -- 

20 90 28.060 Attachments -- 598 11.1 

21 100 31.140 Pipe segment  -- 991 -- 

22 100 31.580 Flange centerline  -- -- 

23 110 32.131 Pipe segment  Spiral weld  11660 11.1 

24 120 43.791 Pipe segment  Spiral weld  5536 11.1 

25 130 49.327 Pipe segment  Straight weld  2213 16.2 

26 130 49.327 Wall thickness variation  from 11.1mmto 16.2mm -- -- 



 

 

28 140 51.540 Pipe segment  Spiral weld  5608 11.1 

29 140 51.540 Wall thickness variation  from 16.2mmto 11.1mm -- -- 

30 150 57.148 Pipe segment  Spiral weld  9432 11.1 

 624 
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Appendix 6 Core Code of Pipeline Defect Point Coordinate Calculating Program 632 

using System; 633 

using System.Collections.Generic; 634 

using System.ComponentModel; 635 

using System.Data; 636 

using System.Drawing; 637 

using System.Linq; 638 

using System.Text; 639 

using System.Threading.Tasks; 640 

using System.Windows.Forms; 641 

using System.IO; 642 

private void button10_Click(object sender, EventArgs e) 643 

{ 644 

    double x1 = 0, y1 = 0, z1 = 0, x2 = 0, y2 = 0, z2 = 0, d1 = 0, d2 = 0, h1 = 0, h2 = 0; 645 

    double l = Convert.ToDouble(textBox9.Text); 646 

    double f = 0,nl=Convert.ToDouble(textBox7 .Text ); 647 

    string[] SplitTxt = textBox2.Text.Split(','); 648 

    for (long  i = 0; i < SplitTxt.Length-9; i+=5) 649 

    { 650 

        d1 = Convert.ToDouble(SplitTxt[i + 1]); 651 

        x1 = Convert.ToDouble(SplitTxt[i + 2]); 652 

        y1 = Convert.ToDouble(SplitTxt[i + 3]); 653 

        z1 = Convert.ToDouble(SplitTxt[i + 4]); 654 

        d2 = Convert.ToDouble(SplitTxt[i + 6]); 655 

        x2 = Convert.ToDouble(SplitTxt[i + 7]); 656 

        y2 = Convert.ToDouble(SplitTxt[i + 8]); 657 

        z2 = Convert.ToDouble(SplitTxt[i + 9]); 658 

        h1 = z1-d1; 659 

        h2 = z2-d2; 660 

        l += Math.Sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(h1-h2)*(h1-h2)); 661 

    } 662 

        textBox8.Text =l.ToString(); 663 

        f = (nl-l)/nl; 664 

        ff = f; 665 

        textBox5.Text = Convert.ToDouble(f ).ToString("P"); 666 

} 667 

private void button9_Click(object sender, EventArgs e) 668 

{ 669 

    double f1 = ff ; 670 

    double l1 = 0; 671 

    string zb = "";  string[] SplitTxt = textBox3.Text.Split(','); 672 

    for (long i = 0; i < SplitTxt.Length - 1; i += 2) 673 

    { 674 

        l1 = Convert.ToDouble(SplitTxt[i + 1]); 675 



 

 

        l1 += (-ff) * l1; 676 

        double x1 = 0, y1 = 0, z1 = 0, x2 = 0, y2 = 0, z2 = 0, d1 = 0, d2 = 0, h1 = 0, h2 = 0, l0=0,l2=0; 677 

        double l = Convert.ToDouble(textBox9.Text); 678 

        double x = 0, y = 0, h = 0; 679 

        string[] SplitTxt1 = textBox2.Text.Split(','); 680 

        for (long j = 0; j < SplitTxt1.Length - 9; j += 5) 681 

        { 682 

            d1 = Convert.ToDouble(SplitTxt1[j  + 1]); 683 

            x1 = Convert.ToDouble(SplitTxt1[j  + 2]); 684 

            y1 = Convert.ToDouble(SplitTxt1[j  + 3]); 685 

            z1 = Convert.ToDouble(SplitTxt1[j  + 4]); 686 

            d2 = Convert.ToDouble(SplitTxt1[j  + 6]); 687 

            x2 = Convert.ToDouble(SplitTxt1[j  + 7]); 688 

            y2 = Convert.ToDouble(SplitTxt1[j  + 8]); 689 

            z2 = Convert.ToDouble(SplitTxt1[j  + 9]); 690 

            h1 = z1 - d1; h2 = z2 - d2; 691 

            l0= Math.Sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) + (h1 - h2) * (h1 - h2)); 692 

            l = l + l0; 693 

            if (l - l1 < 0) 694 

            { 695 

                ; 696 

            } 697 

            else if (l - l1 >0) 698 

            { 699 

                l2 = l0 - (l - l1); 700 

                x = x1 + (x2 - x1) * l2 / l0; 701 

                y = y1 + (y2 - y1) * l2 / l0; 702 

                h = h1 + (h2 - h1) * l2 / l0; 703 

                string xx, yy, hh, v; 704 

                v = SplitTxt[i]; 705 

                xx = Convert.ToDouble(x).ToString(); 706 

                yy = Convert.ToDouble(y).ToString(); 707 

                hh = Convert.ToDouble(h).ToString(); 708 

                zb  +=v + ","+ xx  + "," + yy + "," + hh +",\n"; 709 

                break; 710 

            } 711 

        } 712 

    } 713 

            textBox6.Text = zb; 714 

}  715 



 

 

Appendix 7 Pipeline Landslide Risk Assessment Results 716 

Fid Start Terminus Susceptib

ility 

Susceptib

ility level 

Vulnerability Vulnerability 

level 

Risk Risk 

level 

1 K558 K559+446 0.874 Ⅳ 0.168 Ⅰ 0.147 Ⅱ 

2 K559+446 K563+718 0.874 Ⅳ 0.178 Ⅰ 0.156 Ⅱ 

3 K563+718 K564+883 0.932 Ⅳ 0.143 Ⅰ 0.133 Ⅱ 

4 K564+883 K566+90 0.943 Ⅳ 0.149 Ⅰ 0.141 Ⅱ 

5 K566+90 K567+117 0.943 Ⅳ 0.280 Ⅱ 0.264 Ⅲ 

6 K567+117 K567+224 0.766 Ⅳ 0.095 Ⅰ 0.073 Ⅰ 

7 K567+224 K567+384 0.729 Ⅲ 0.117 Ⅰ 0.085 Ⅱ 

8 K567+384 K567+674 0.729 Ⅲ 0.079 Ⅰ 0.058 Ⅰ 

9 K567+674 K567+782 0.729 Ⅲ 0.141 Ⅰ 0.103 Ⅱ 

10 K567+782 K567+846 0.729 Ⅲ 0.066 Ⅰ 0.048 Ⅰ 

11 K567+846 K567+904 0.729 Ⅲ 0.097 Ⅰ 0.071 Ⅰ 

12 K568+904 K568+197 0.722 Ⅲ 0.154 Ⅰ 0.111 Ⅱ 

13 K568+197 K568+430 0.763 Ⅳ 0.144 Ⅰ 0.110 Ⅱ 

14 K569+430 K569+419 0.739 Ⅲ 0.186 Ⅰ 0.137 Ⅱ 

15 K569+419 K569+443 0.739 Ⅲ 0.141 Ⅰ 0.104 Ⅱ 

16 K569+443 K569+467 0.739 Ⅲ 0.107 Ⅰ 0.079 Ⅱ 

17 K569+467 K569+578 0.739 Ⅲ 0.121 Ⅰ 0.089 Ⅱ 

18 K569+578 K569+920 0.739 Ⅲ 0.107 Ⅰ 0.079 Ⅱ 

19 K571+920 K571+123 0.736 Ⅲ 0.127 Ⅰ 0.093 Ⅱ 

20 K571+123 K571+982 0.799 Ⅳ 0.109 Ⅰ 0.087 Ⅱ 

21 K572+982 K572+729 0.753 Ⅳ 0.090 Ⅰ 0.068 Ⅰ 

22 K573+729 K573+548 0.802 Ⅳ 0.094 Ⅰ 0.075 Ⅰ 

23 K574+548 K574+249 0.805 Ⅳ 0.084 Ⅰ 0.068 Ⅰ 

24 K574+249 K574+525 0.805 Ⅳ 0.150 Ⅰ 0.121 Ⅱ 

25 K575+525 K575+538 0.805 Ⅳ 0.115 Ⅰ 0.093 Ⅱ 

26 K575+538 K575+600 0.805 Ⅳ 0.157 Ⅰ 0.126 Ⅱ 

27 K576+600 K576+737 0.816 Ⅳ 0.108 Ⅰ 0.088 Ⅱ 

28 K577+737 K577+120 0.889 Ⅳ 0.089 Ⅰ 0.079 Ⅰ 

29 K577+120 K577+146 0.889 Ⅳ 0.094 Ⅰ 0.084 Ⅰ 

30 K577+146 K577+187 0.889 Ⅳ 0.169 Ⅰ 0.150 Ⅱ 

31 K578+187 K578+571 0.889 Ⅳ 0.118 Ⅰ 0.105 Ⅱ 

32 K578+571 K578+608 0.889 Ⅳ 0.095 Ⅰ 0.084 Ⅰ 

33 K579+608 K579+624 0.853 Ⅳ 0.133 Ⅰ 0.113 Ⅱ 

34 K580+624 K580+582 0.871 Ⅳ 0.156 Ⅰ 0.136 Ⅱ 

35 K581+582 K581+43 0.871 Ⅳ 0.097 Ⅰ 0.084 Ⅰ 

36 K581+43 K581+273 0.871 Ⅳ 0.143 Ⅰ 0.125 Ⅱ 

37 K581+273 K581+536 0.880 Ⅳ 0.125 Ⅰ 0.110 Ⅱ 

38 K581+536 K581+659 0.872 Ⅳ 0.154 Ⅰ 0.134 Ⅱ 

39 K582+659 K582+263 0.830 Ⅳ 0.152 Ⅰ 0.126 Ⅱ 

40 K582+263 K582+437 0.830 Ⅳ 0.116 Ⅰ 0.096 Ⅱ 

41 K583+437 K583+512 0.830 Ⅳ 0.152 Ⅰ 0.126 Ⅱ 

42 K583+512 K583+693 0.798 Ⅳ 0.105 Ⅰ 0.084 Ⅱ 

43 K583+693 K583+720 0.740 Ⅲ 0.113 Ⅰ 0.084 Ⅱ 

44 K585+720 K585+55 0.740 Ⅲ 0.178 Ⅰ 0.132 Ⅱ 

45 K585+55 K585+101 0.668 Ⅲ 0.196 Ⅰ 0.131 Ⅱ 

46 K585+101 K585+370 0.668 Ⅲ 0.178 Ⅰ 0.119 Ⅱ 

47 K585+370 K585+634 0.696 Ⅲ 0.190 Ⅰ 0.132 Ⅱ 

48 K585+634 K585+734 0.668 Ⅲ 0.116 Ⅰ 0.077 Ⅱ 



 

 

49 K585+734 K585+908 0.627 Ⅲ 0.198 Ⅰ 0.124 Ⅱ 

50 K585+908 K585+949 0.627 Ⅲ 0.168 Ⅰ 0.105 Ⅱ 

51 K586+949 K586+782 0.627 Ⅲ 0.173 Ⅰ 0.108 Ⅱ 

52 K586+782 K586+805 0.627 Ⅲ 0.117 Ⅰ 0.073 Ⅱ 

53 K587+805 K587+364 0.627 Ⅲ 0.171 Ⅰ 0.107 Ⅱ 

54 K587+364 K587+498 0.618 Ⅲ 0.078 Ⅰ 0.048 Ⅰ 

55 K587+498 K587+794 0.618 Ⅲ 0.107 Ⅰ 0.066 Ⅰ 

56 K589+794 K589+251 0.618 Ⅲ 0.102 Ⅰ 0.063 Ⅰ 

57 K590+251 K590+757 0.618 Ⅲ 0.172 Ⅰ 0.106 Ⅱ 

58 K590+757 K590+780 0.556 Ⅲ 0.153 Ⅰ 0.085 Ⅱ 

59 K590+780 K590+812 0.556 Ⅲ 0.123 Ⅰ 0.068 Ⅱ 

60 K591+812 K591+500 0.555 Ⅲ 0.135 Ⅰ 0.075 Ⅱ 

61 K591+500 K591+946 0.555 Ⅲ 0.087 Ⅰ 0.048 Ⅰ 

62 K592+946 K592+259 0.555 Ⅲ 0.107 Ⅰ 0.059 Ⅰ 

63 K593+259 K593+631 0.517 Ⅲ 0.152 Ⅰ 0.079 Ⅱ 

64 K593+631 K593+912 0.374 Ⅱ 0.153 Ⅰ 0.057 Ⅱ 

65 K594+912 K594+993 0.374 Ⅱ 0.150 Ⅰ 0.056 Ⅱ 

66 K595+993 K595+203 0.374 Ⅱ 0.076 Ⅰ 0.028 Ⅰ 

67 K595+203 K595+261 0.359 Ⅱ 0.114 Ⅰ 0.041 Ⅰ 

68 K595+261 K595+383 0.359 Ⅱ 0.099 Ⅰ 0.036 Ⅰ 

69 K596+383 K596+383 0.412 Ⅱ 0.278 Ⅱ 0.115 Ⅱ 

70 K596+383 K596+429 0.412 Ⅱ 0.107 Ⅰ 0.044 Ⅰ 

71 K597+429 K597+62 0.359 Ⅱ 0.121 Ⅰ 0.043 Ⅰ 

72 K597+62 K597+200 0.412 Ⅱ 0.158 Ⅰ 0.065 Ⅱ 

73 K597+200 K597+345 0.412 Ⅱ 0.133 Ⅰ 0.055 Ⅰ 

74 K597+345 K597+680 0.412 Ⅱ 0.273 Ⅱ 0.112 Ⅱ 

75 K599+680 K599+376 0.321 Ⅱ 0.461 Ⅱ 0.148 Ⅱ 

76 K599+376 K599+693 0.211 Ⅰ 0.105 Ⅰ 0.022 Ⅰ 

77 K600+693 K600+188 0.211 Ⅰ 0.179 Ⅰ 0.038 Ⅰ 

78 K600+188 K600+353 0.106 Ⅰ 0.172 Ⅰ 0.018 Ⅰ 

79 K601+353 K601+369 0.106 Ⅰ 0.264 Ⅱ 0.028 Ⅰ 

80 K602+369 K602+495 0.099 Ⅰ 0.190 Ⅰ 0.019 Ⅰ 

81 K603+495 K603+131 0.067 Ⅰ 0.436 Ⅱ 0.029 Ⅰ 

82 K603+131 K603+551 0.099 Ⅰ 0.144 Ⅰ 0.014 Ⅰ 

83 K604+551 K604+321 0.104 Ⅰ 0.253 Ⅱ 0.026 Ⅰ 

84 K604+321 K604+976 0.099 Ⅰ 0.102 Ⅰ 0.010 Ⅰ 

85 K605+976 K605+735 0.178 Ⅰ 0.372 Ⅱ 0.066 Ⅱ 

86 K606+735 K606+368 0.236 Ⅰ 0.637 Ⅲ 0.150 Ⅱ 

87 K606+368 K606+838 0.236 Ⅰ 0.127 Ⅰ 0.030 Ⅰ 

88 K607+838 K607+596 0.323 Ⅱ 0.407 Ⅱ 0.131 Ⅱ 

89 K608+596 K608+20 0.323 Ⅱ 0.163 Ⅰ 0.053 Ⅱ 

90 K608+20 K608+287 0.323 Ⅱ 0.145 Ⅰ 0.047 Ⅰ 

91 K608+287 K608+546 0.346 Ⅱ 0.084 Ⅰ 0.029 Ⅰ 

92 K608+546 K608+583 0.406 Ⅱ 0.215 Ⅰ 0.087 Ⅱ 

93 K608+583 K608+835 0.406 Ⅱ 0.291 Ⅱ 0.118 Ⅱ 

94 K609+835 K609+565 0.442 Ⅱ 0.279 Ⅱ 0.123 Ⅱ 

95 K610+565 K610+564 0.442 Ⅱ 0.403 Ⅱ 0.178 Ⅱ 

96 K610+564 K610+945 0.442 Ⅱ 0.453 Ⅱ 0.200 Ⅱ 

97 K611+945 K611+89 0.482 Ⅱ 0.117 Ⅰ 0.056 Ⅰ 

98 K611+89 K611+691 0.501 Ⅲ 0.138 Ⅰ 0.069 Ⅱ 

99 K612+691 K612+413 0.501 Ⅲ 0.175 Ⅰ 0.088 Ⅱ 



 

 

100 K613+413 K613+269 0.501 Ⅲ 0.163 Ⅰ 0.082 Ⅱ 

101 K613+269 K613+442 0.502 Ⅲ 0.166 Ⅰ 0.083 Ⅱ 

102 K614+442 K614+83 0.502 Ⅲ 0.354 Ⅱ 0.178 Ⅱ 

103 K614+83 K614+980 0.502 Ⅲ 0.263 Ⅱ 0.132 Ⅱ 

104 K615+980 K615+218 0.601 Ⅲ 0.153 Ⅰ 0.092 Ⅱ 

105 K615+218 K615+388 0.601 Ⅲ 0.143 Ⅰ 0.086 Ⅱ 

106 K616+388 K616+87 0.635 Ⅲ 0.126 Ⅰ 0.080 Ⅱ 

107 K616+87 K616+300 0.556 Ⅲ 0.144 Ⅰ 0.080 Ⅱ 

108 K616+300 K616+460 0.505 Ⅲ 0.269 Ⅱ 0.136 Ⅱ 

109 K617+460 K617+715 0.505 Ⅲ 0.172 Ⅰ 0.087 Ⅱ 

110 K617+715 K617+827 0.505 Ⅲ 0.255 Ⅱ 0.129 Ⅱ 

111 K618+827 K618+28 0.556 Ⅲ 0.170 Ⅰ 0.095 Ⅱ 

112 K618+28 K618+687 0.556 Ⅲ 0.313 Ⅱ 0.174 Ⅱ 

113 K620+687 K620+78 0.556 Ⅲ 0.188 Ⅰ 0.105 Ⅱ 

114 K620+78 K620+298 0.425 Ⅱ 0.196 Ⅰ 0.083 Ⅱ 

115 K621+298 K621+509 0.576 Ⅲ 0.223 Ⅰ 0.128 Ⅱ 

116 K621+509 K621+611 0.425 Ⅱ 0.107 Ⅰ 0.045 Ⅰ 

117 K622+611 K622+10 0.425 Ⅱ 0.262 Ⅱ 0.111 Ⅱ 

118 K622+10 K622+86 0.425 Ⅱ 0.122 Ⅰ 0.052 Ⅰ 

119 K622+86 K622+539 0.693 Ⅲ 0.178 Ⅰ 0.123 Ⅱ 

120 K622+539 K622+897 0.634 Ⅲ 0.549 Ⅲ 0.348 Ⅲ 

121 K623+897 K623+36 0.634 Ⅲ 0.535 Ⅲ 0.339 Ⅲ 

122 K623+36 K623+794 0.693 Ⅲ 0.145 Ⅰ 0.100 Ⅱ 

123 K624+794 K624+866 0.693 Ⅲ 0.310 Ⅱ 0.215 Ⅱ 

124 K625+866 K625+242 0.796 Ⅳ 0.137 Ⅰ 0.109 Ⅱ 

125 K627+242 K627+60 0.859 Ⅳ 0.452 Ⅱ 0.388 Ⅲ 

126 K627+60 K627+162 0.859 Ⅳ 0.193 Ⅰ 0.166 Ⅱ 

127 K627+162 K627+313 0.859 Ⅳ 0.166 Ⅰ 0.143 Ⅱ 

128 K627+313 K627+700 0.783 Ⅳ 0.167 Ⅰ 0.131 Ⅱ 

129 K628+700 K628+146 0.908 Ⅳ 0.501 Ⅲ 0.455 Ⅲ 

130 K628+146 K628+196 0.908 Ⅳ 0.139 Ⅰ 0.126 Ⅱ 

131 K628+196 K628+610 0.908 Ⅳ 0.631 Ⅲ 0.573 Ⅳ 

132 K629+610 K629+355 0.787 Ⅳ 0.369 Ⅱ 0.290 Ⅲ 

133 K629+355 K629+525 0.787 Ⅳ 0.729 Ⅲ 0.574 Ⅳ 

134 K629+525 K629+570 0.787 Ⅳ 0.252 Ⅱ 0.198 Ⅱ 

135 K629+570 K629+620 0.787 Ⅳ 0.465 Ⅱ 0.366 Ⅲ 

136 K630+620 K630+348 0.787 Ⅳ 0.286 Ⅱ 0.225 Ⅱ 

137 K630+348 K630+956 0.892 Ⅳ 0.389 Ⅱ 0.347 Ⅲ 

138 K631+956 K631+116 0.886 Ⅳ 0.423 Ⅱ 0.375 Ⅲ 

139 K631+116 K631+528 0.805 Ⅳ 0.513 Ⅲ 0.413 Ⅲ 

140 K633+528 K633+435 0.805 Ⅳ 0.568 Ⅲ 0.457 Ⅲ 

141 K635+435 K635+302 0.933 Ⅳ 0.625 Ⅲ 0.583 Ⅳ 

142 K635+302 K635+326 0.884 Ⅳ 0.611 Ⅲ 0.540 Ⅲ 

143 K635+326 K635+359 0.884 Ⅳ 0.441 Ⅱ 0.390 Ⅲ 

144 K635+359 K635+368 0.884 Ⅳ 0.194 Ⅰ 0.171 Ⅱ 

145 K635+368 K635+530 0.884 Ⅳ 0.374 Ⅱ 0.331 Ⅲ 

146 K635+530 K635+604 0.884 Ⅳ 0.307 Ⅱ 0.271 Ⅲ 

147 K635+604 K635+850 0.805 Ⅳ 0.377 Ⅱ 0.303 Ⅲ 

148 K635+850 K635+943 0.805 Ⅳ 0.234 Ⅰ 0.188 Ⅱ 

149 K635+943 K635+972 0.805 Ⅳ 0.139 Ⅰ 0.112 Ⅱ 

150 K635+972 K635+974 0.805 Ⅳ 0.121 Ⅰ 0.097 Ⅱ 



 

 

151 K635+974 K635+990 0.805 Ⅳ 0.138 Ⅰ 0.111 Ⅱ 

152 K636+990 K636+152 0.933 Ⅳ 0.598 Ⅲ 0.558 Ⅲ 

153 K636+152 K636+159 0.933 Ⅳ 0.157 Ⅰ 0.146 Ⅱ 

154 K636+159 K636+320 0.884 Ⅳ 0.579 Ⅲ 0.512 Ⅲ 

155 K636+320 K636+427 0.884 Ⅳ 0.166 Ⅰ 0.147 Ⅱ 

156 K636+427 K636+517 0.884 Ⅳ 0.124 Ⅰ 0.110 Ⅱ 

157 K636+517 K636+806 0.834 Ⅳ 0.663 Ⅲ 0.553 Ⅲ 

158 K636+806 K636+893 0.834 Ⅳ 0.794 Ⅳ 0.662 Ⅳ 

159 K637+893 K637+57 0.834 Ⅳ 0.519 Ⅲ 0.433 Ⅲ 

160 K637+57 K637+109 0.834 Ⅳ 0.542 Ⅲ 0.452 Ⅲ 

161 K637+109 K637+181 0.834 Ⅳ 0.111 Ⅰ 0.093 Ⅱ 

162 K637+181 K637+332 0.834 Ⅳ 0.127 Ⅰ 0.106 Ⅱ 

163 K638+332 K638+87 0.834 Ⅳ 0.608 Ⅲ 0.507 Ⅲ 

164 K638+87 K638+140 0.834 Ⅳ 0.157 Ⅰ 0.131 Ⅱ 

165 K638+140 K638+193 0.767 Ⅳ 0.682 Ⅲ 0.523 Ⅲ 

166 K638+193 K638+199 0.767 Ⅳ 0.188 Ⅰ 0.144 Ⅱ 

167 K638+199 K638+226 0.767 Ⅳ 0.126 Ⅰ 0.097 Ⅱ 

168 K638+226 K638+368 0.767 Ⅳ 0.532 Ⅲ 0.408 Ⅲ 

169 K638+368 K638+409 0.767 Ⅳ 0.604 Ⅲ 0.463 Ⅲ 

170 K638+409 K638+432 0.767 Ⅳ 0.205 Ⅰ 0.157 Ⅱ 

171 K638+432 K638+444 0.767 Ⅳ 0.525 Ⅲ 0.403 Ⅲ 

172 K638+444 K638+676 0.767 Ⅳ 0.173 Ⅰ 0.133 Ⅱ 

173 K638+676 K638+837 0.767 Ⅳ 0.479 Ⅱ 0.367 Ⅲ 

174 K639+837 K639+266 0.744 Ⅲ 0.483 Ⅱ 0.359 Ⅲ 

175 K639+266 K639+339 0.744 Ⅲ 0.427 Ⅱ 0.318 Ⅲ 

176 K639+339 K639+435 0.744 Ⅲ 0.549 Ⅲ 0.408 Ⅲ 

177 K639+435 K639+562 0.631 Ⅲ 0.324 Ⅱ 0.204 Ⅱ 

178 K640+562 K640+63 0.607 Ⅲ 0.476 Ⅱ 0.289 Ⅲ 

179 K641+63 K641+600 0.607 Ⅲ 0.604 Ⅲ 0.367 Ⅲ 

180 K642+600 K642+225 0.607 Ⅲ 0.461 Ⅱ 0.280 Ⅲ 
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Appendix 8 Field environment of study area 719 
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Figure 1 Vegetation distribution in a watershed of the study area 721 
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Figure 2 Vegetation environment of a pipeline section in the study area 723 
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Figure 3 Outcropping of rock strata in the study area 725 


