Response to Comments from Referee 1: Assessing the tsunami mitigation effectiveness of a planned Banda Aceh Outer Ring Road (BORR), Indonesia

GENERAL COMMENTS:

This paper discussed the effectiveness of the elevated road as the construction for tsunami disaster mitigation in Banda Aceh by using numerical simulation. The elevated road was planned after 2004 Indian Ocean tsunami. However, the detailed evaluation of the road as the disaster prevention facility has not been conducted. In this paper, 4 scenarios were prepared for the tsunami inundation simulation. These scenarios included the change of land use in the city of Banda Aceh. Banda Aceh has been recovering and developing after 2004 tsunami disaster. Therefore, the viewpoint of land use is important to discuss the effect of the disaster prevention facility, such as the elevated road, in near future. The scenario of the magnitude of earthquake is quite severe, 8.5 and 9.15 Mw, and the reduction of the tsunami inundation area by the elevated road is not sufficient. But the effect of the road was confirmed and it is inferred that the road will have some effective functions for the disaster mitigation against the tsunami generated by earthquake smaller than 2004 Indian Ocean Tsunami. Consequently, it is expected that the results of this paper lead to the more detailed planning of the elevated road and discussion as the disaster prevention facility. Then, this paper will contribute to the future tsunami disaster mitigation and development of Banda Aceh city.

RESPONSE:

Thank you very much for the referee 1’s comments. This paper was inspired by lack of structural mitigation for tsunami hazards in Banda Aceh despite massive impacts found due to the 2004 Indian Ocean tsunami. One of the reasons for this situation is due to weak financial capacity of the city to construct buildings, sea walls, or other types of tsunami mitigation structures. On the other hand, tsunami is still an eminent threat to the city. Therefore, to seek alternatives for tsunami structural mitigation, we attempt to adopt concept of co-benefits structure. The co-benefits structure is a concept to put a structure or infrastructure to facilitate other functions than its main function. In this study, we select a road that is planned to develop along the coastal area of the city which will be mainly aimed at reducing traffic congestions in the city. In this study, we propose the road to also be functioned for tsunami wave reduction by modifying its designed. The road was initially planned to be constructed at almost similar level to its original soil surface. Here, we propose to elevate the road about 5 m above the mean sea level (embankment road type). The similar type of the road was proven effective to stop tsunami wave on-shore propagation as in the case of Tobu Highway during the 2011 Great East Japan Earthquake and Tsunami in Sendai.

COMMENT 1:

In Abstract: The condition of BORR should be written briefly.

RESPONSE 1:

We have added the following statements to explain about the BORR.
"The road will transect several lagoon, settlements, and bare land around the coast of Banda Aceh. Beside its main function to reduce traffic congestion in the city, the BORR is also proposed to reduce impacts of future tsunamis."

COMMENT 2: p.1, L.38-39: The relationship between 0.5m and "10% higher" is unknown.
RESPONSE 2:
The study done by Horspool et al. published in 2014 was based on probabilistic tsunami hazards analysis where some recorded tsunami were used to calculate probable tsunamis in this area. For the area around Banda Aceh, the study revealed that tsunami wave height as high as 0.5 m could impact the region about 10% higher than lower tsunami wave height. This is one of the reasons to introduce the elevated road as a structure that could reduce tsunami energy for smaller intensity tsunami than the 2004 Indian Ocean tsunami.

COMMENT 3:
p.3, L.2: "about 500m from its coastal line from any settlement". Where is it "500m" from?
RESPONSE 3:
An area with a-500 m of width was intended to be deserted from any settlement. The 500 m was measured perpendicular from the coastline of the city.

COMMENT 4:
p.3, L.15-16: From Fig.3, is the road on the revetment?
RESPONSE 4:
No, the picture in Figure 3 was intended to show the existing condition around the coastal area of Banda Aceh. The road will be constructed along a transect as can be seen in Figure 1.

COMMENT 5: p.3, L.23: Has the problem (increase of land price) been solved already? Is there a possibility of restarting the project?
RESPONSE 5:
A preliminary feasibility study has been performed to assess the land price and suitability. The study concluded that the road will attempt to avoid to cross settlement area whenever possible as this could create other problems.

COMMENT 6: p.4, L.13,14: In linear SWE, P=hu and Q=hv are correct. However, are these correct in nonlinear SWE?
RESPONSE 6: Yet, it is still applicable for nonlinear SWE mode.

COMMENT 7:
p.4, L.33-34: Where is the reference height for "3m". If it is from the mean sea level, the height of the elevated road is less than 3.0m. But if it is from the original ground level, the height is 3.0m. At p.3, L.26, the term of "initial ground" is used.
RESPONSE 7:
Thank you for looking at this mistake. It should be plus 5 m from mean sea level. We have revised it accordingly.

COMMENT 8: p.4, L.33-34: How much is the width of the road? Is the grid size of 11.5 m in Layer 5 enough for the description of the road?

RESPONSE 8:
The width of the planned road is 30 m. As our grid size in this layer was 11.5 m, we use three grids to represent the width of the road (BORR). This is sufficient to mimic the road width in our models.

COMMENT 9:
p.5, L.12-13: The land use in 2004 and its plan for 2029 should be shown. And the difference should be explained.

RESPONSE 9:
Graphical differences between the 2004 land use and the 2029 land use can be seen in Figure 6 and Figure 7. Here we can see that the differences are largely found in the ponds area and coastal forest area. The ponds area, where mainly located in the coastal lagoon, will be decreased. Meanwhile, coastal forest area will be increased.

COMMENT 10: p.6, L.19-20: How did you calculate the percentage of 1.2%? If this value is "% of total decrease" in Tab.5, what is the meaning of this value? If you want to say the effect of the land use change from 2004 to 2029 with BORR, you should calculate this value using 1252.0 (2004 with BORR) and 1203.47 (2029 with BORR). It is about 3.9% (>1.2%).

RESPONSE 10:
The percentage here means the ratio of total tsunami inundation area to the area of Banda Aceh. Percentage of the decrease was calculated as follows.
(Percentage of tsunami inundation area based on land use 2029-magnitude 8.5 mw) – (percentage of tsunami inundation area based land use 2004 and magnitude 8.5 mw) = 22.51%-21.33% = 1.18% or about 1.2%
The percentage of the total decrease means that the difference of total inundation are after BORR constructed. For example:
Example: for scenario of 8.5 mw without BORR (simulation #111) the inundation area was = 1.591,73 ha and for scenario 8.5 Mw with BORR (simulation #112) the inundation area was 1.252,20 ha. Therefore, the tsunami inundation area was decreased 339.53 ha (1.591,73 ha - 1.252,20 ha). Hence, the total decrease was = (339.53/1591,73) x 100% = 21.33%.
In the section, we explained the total of tsunami inundation area decreased using scenario of landuse 2029. Based on these explanation, we confirm that the statements are correct.

COMMENT 11: p.6, L.24: What is the reason of "Interestingly"?
RESPONSE 11: The elevated road which was not intended to reduce tsunami waves. During the 2011 Great East Japan Earthquake and Tsunami, the road was the limit of the tsunami inundation area. This proved that the structure could also be functioned as a secondary measure to reduce impacts of tsunami waves. Based on these, we acknowledge the provided facts are interesting and worth to be adopted as co-benefit structures for tsunami mitigation.

COMMENT 12: p.6, L.29-30: Where are the bridges in Fig.12?
RESPONSE 12: The bridges are located across the Flood Way, Krueng Aceh River, and Krueng Neng river. In Figure 12, the cross sections did not pass the bridge. Therefore, the bridge can not be seen. We have added the bridge positions in Figure 1. Please see the supplement part of this response (Fig. 1) to confirm the revision has been made.

COMMENT 13: p.6, L.31, "travel about 6km along the main rivers.": It is impossible to confirm the 6km-inundation in Fig.12.

RESPONSE 13: Yes, Fig. 12 could not explained the length of the inundation area along the main rivers. However, Fig. 10 could better explain our findings. Cross-sections illustrated in Fig. 12 were intended to demonstrate the decrease of tsunami depths before and after BORR with various scenarios.

COMMENT 14: p.6, L.31: What is the reason of "higher than 1.5m"?
RESPONSE 14: This statement was intended to explain the existing condition of the river embankment in the city that was constructed higher than 1.5 m from the original soil surface. About 20 years ago, the embankment levels were increased to about plus 3.0 m from the soil through a series of construction projects.

COMMENT 15: p.6, L.36-37: There is no discussion about velocity before. Is it possible to mention the effect of velocity reduction by the elevated road here?
RESPONSE 15: Thank you for your suggestion. The reduction of tsunami velocity due to obstacles, naturally and man-made structures have been proven correct by previous researches (e.g. Nandasena et al., 2012; Matsutomi and Okamoto, 2010). Sea walls as well as other types on-shore structures will reduce energy of the tsunami mainly by reducing the wave's velocity. Froude numbers will be reduced as the tsunami hit natural barriers or other solid man-made structures. Similar explanations have been added in Section 4.2 to initiate explanation impacts of the elevated road. This will appear in our revised manuscript.

COMMENT 16: p.7, L.9: It is hard to recognize this value (difference) in Fig.11. You should mention Tab.5 for this difference.
RESPONSE 16: We have added a statement to refer to Table 4 as suggested.

COMMENT 17: p.7, L.11, "...about 5m with...": From the figure, "4m" is proper
RESPONSE 17:
Thank you for suggesting the heights reduction to 4 m. We accept the suggestion and has revised it in our manuscript, accordingly.

COMMENT 18: p.7, L.18: What kind of "damages" do you considered? There is no explanation about the concrete type of damage.
RESPONSE 18:
The damages caused by the tsunami has been studied by Suppasri et al. (2011) and Suppasri et al. (2012b). We have added the two references to specifically refer to the types of damages meant in this study.

COMMENT 19: p.7, L.18: How did you calculate "about 22%"?
RESPONSE 19: This is an average value for the a tsunami generated by an 8.5 Mw. Please see Table 5 column 5 for the comparison of the case. We have moved the sentence to suit the context of the percentage before discussing the 9.15 Mw case.

COMMENT 20: p.7, L.29: What is the meaning of "dynamic variable"?
RESPONSE 20:
Land use changes from time to time. It follows regulations and people/economic demands on the other hand. In the case of Aceh, the land use planning is aimed to be implemented until 2029. It is important to note, despite the plan, it is possible some mid-term evaluation will be done and later also changed the land use of the city. Therefore, the land use could be regarded as dynamic variable in this study.

COMMENT 21: p.7, L.41: From Fig.12, tsunami wave with 3m height does not overflow the structure. The content of this sentence is not consistent to the simulation results
RESPONSE 21:
Thank you for suggesting us. The road will not be overflowed if the tsunami height is 3 m in front of the road at Transects A and C. However, it is important to see that at Transect B, the tsunami will overtop the structure and create a lower tsunami depth, which is between 0.8-1.5 m. Please refer to Figure 12.

COMMENT 22: p.8, L.3: What is the relation between the elevated road and the drainage system?
RESPONSE 22: We need to carefully consider to re-design the city drainage system if the elevated road implemented. The elevated road could hamper surface runoff during rainy period. This could make flood problem in the city become worse. Therefore, it is important to consider to modify the city’s drainage system if the elevated road adopted.

COMMENT 23: p.8, L.4-5: Is this sentence consistent to "p.3, L.26" and Fig.12
RESPONSE 23: The elevation is planned to be at +5.0 m from mean sea level. As the average soil surface is about 1.5 m, therefore, we add the words “or around 3.5 m from initial soil surface”. To avoid confusing meaning, we delete the words “or around 3.5 m from initial soil surface".
COMMENT 24: p.8, L.19: What is the "co-benefits" for tsunami wave?
RESPONSE 24:
A co-benefits structure is a concept to put a structure or infrastructure to facilitate other functions than its main function. In this study, we select a road that is planned to develop along the coastal area of the city which will be mainly aimed at reducing traffic congestions in the city. In this study, we propose the road to also be functioned for tsunami wave reduction by modifying its designed. The concept of co-benefit structure has been also studied in Sri Lanka (Samarasekara et al., 2017). Similar explanation has been also provided at P.7 Line 43.

COMMENT 25: p.8, L.19: What is "Tsunami multidefense system"? There is no explanation.
RESPONSE 25:

Tsunami multi-defense is a set of structures to mitigate impacts of tsunami. The concept was introduced in Tohoku region of Japan during rehabilitation and reconstruction process following the 2011 tsunami. The structures consist of sea-wall, coastal forests, canal that is parallel to coastline, escape hills, and elevated roads. The multi-defense system has been studied by Koshimura et al. (2014) and Pakoksung et al. (2018). A similar explanation has been added in Page 2. Illustration of the multi-layered system can be seen in Fig. 2 in the supplement part of this response.

Technical Corrections

COMMENT 26: p.4: In equation, "sin" and "cos" should be written in Roman style.
A: Thank you, we will revise it to sin and cos.

COMMENT 26: p.4: "Φ" should be changed to "ϕ" in eqs.(4)-(6).
RESPONSE 26: In our manuscript we already put the symbol as "ϕ". Please confirm our response to the equation attached (see supplement part of our response).

\[
\frac{\partial \eta}{\partial t} + \frac{1}{R \cos \phi} \left[\frac{\partial P}{\partial \psi} + \frac{\partial}{\partial \phi} \left(\cos \phi Q \right) \right] = -\frac{\partial h}{\partial t}. \tag{4}
\]
\[
\frac{\partial Q}{\partial t} + \frac{1}{R \cos \phi} \frac{\partial}{\partial \psi} \left\{ PQ \right\} + \frac{1}{R} \frac{\partial}{\partial \phi} \left\{ Q^2 \right\} + \frac{gH}{R} \frac{\partial}{\partial \phi} \left(\eta + F \right) = 0 , \quad (6)
\]

COMMENT 27: p.4, L.16: "g" should be written in Italic style.
RESPONSE 27: Thank you, we will replace to Italic style \(g \)

COMMENT 28: p.5, Eqs.(11) and (13): Are these descriptions correct? Is "logK" a variable, that is, is "log" not a function? Eq.(12) is the same.
RESPONSE 28: It means logarithmic values of \(K \). They are correct.

COMMENT 29: p.6, L.21: ... about 25% both in 2004 and 2029.
RESPONSE 29: yes, they are correct. Both similar percentages were found in 2004 and 2029 land use cases.

COMMENT 30: p.6, L.21: "Figure 12" should be labeled as "Figure 10". Because this figure is refered before original Figure 10 and 11
RESPONSE 30: In Page 6 L.15, we have mentioned Figure 9. Figures 9,10 and 11 were shown earlier to describe the overall tsunami flow depths for each scenario. Later, analysis was done following three transects. Therefore, we put Figure 12 at the end of the manuscript.

COMMENT 31: p.6, L.22: ... the three transect indicated in Fig1 that ...
RESPONSE 31: Thank you very much. We agree with the Refere. Therefore, we have modified it accordingly.

COMMENT 32: p.6, L.29, "could be reduced": "stopped" may be suitable in this case than "reduced".
RESPONSE 32: In transect B, the tsunami wave could not be stopped. It will overflow the elevated road but will create shorter distance of tsunami run-up. Therefore, we would like to maintain the word "reduced" at this sentence.

COMMENT 33: p.6, L.41: The number of figures should be changed by change of figure number of Fig.12.
RESPONSE 33: Our response to this is similar to COMMENT No. 30.

COMMENT 34: p.7, L.35: "Tokida and Tanimoto, 2014" is not found in the references.
RESPONSE 34: The reference is already in the reference list. Please find the following:

COMMENT 35: p.8, L.7, "overlapping process": "overtopping" or "overflowing" ?
RESPONSE 35:
Thank you for pointing out this word. It is incorrect to use overlapping in this case. We have changed it to overflowing as this is a long-wave process.

COMMENT 36: Figure 4,5,9,10,11: These figures should be bigger.
RESPONSE 36: Thank you. We will show the larger figures.

COMMENT 37: Figure 10 (caption): The simulation were demonstrated by using land use ...
RESPONSE 37: We will revise the sentence with “The simulation were demonstrated by using land use type before the 2004 Indian Ocean Tsunami”

COMMENT 38: Figure 11 (caption): ...and with BORR (right).
RESPONSE 38: Thank you for the detail correction. We will replace “without” with “with”

COMMENT 39: Figure 12: What is "Elevated Road (±5.0m)?" In p.4, L.34, "to plus 3.0m from the mean sea level"
RESPONSE 39: We will revise the caption of elevated road in Figure 12 to “Elevated road ±5.0 above MSL”

COMMENT 40: Figure 12: It is difficult to distinguish the difference of lines, especially yellow lines are unclear.
RESPONSE 40: Thank you. We will replace it with a more contrast color and clearer legends. Please refer to the Supplement part of this response (Fig. 2) for one of examples of the revised figures.

COMMENT 41: Figure 12 (legend): Simulation code should be written in the legend because the code is used in the main sentence.
RESPONSE 41: Thank you very much. In Table 2, We have determined to classify the simulation code and also in the main sentence. We agree with the Referee to use the simulation code in the legend of Figure 12. Therefore, we have revised it accordingly. Please see the Supplement part of this response (Fig. 2) as our confirmation to the revision.

COMMENT 42: Table 1 (title): ...setup of the six layers for ...
RESPONSE 42: Thank you, We will change “five layer” to “six layers”

COMMENT 43: Table 1: What is the "Ratio" in 5th column? If this is grid size ratio from parent layer to child layer, a blank is better in Layer 1.
RESPONSE 43: Yes, it is a grid size ratio from parent layer to child layer. Thank you, We will delete the ratio in Layer 1, make it a blank column.

COMMENT 44: Table 1 (Layer 6): Two values in Latitude and Longitude may indicate the locations of "start" and "end", respectively. But why is only one value in Layer 6?
RESPONSE 44: Thank you for your correction. We missed the bottom row. Layer 6 should have two values like the other ones. Thank you for the correction. We have modified the table as can be seen in the Supplement part of our response. The revised table has also adopted suggestions from Referee 2.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Number of Grid</th>
<th>Ratio</th>
<th>Grid size (m)</th>
<th>Time Step (sec.)</th>
<th>Manning Roughness Coefficients</th>
<th>SWE type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>88.1</td>
<td>1772</td>
<td>1856</td>
<td>0.1</td>
<td>none</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.93</td>
<td>102.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>91</td>
<td>1920</td>
<td>2</td>
<td>928</td>
<td>0.05</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.08</td>
<td>92.05</td>
<td>3899</td>
<td>3</td>
<td>309.33</td>
<td>0.017</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.98</td>
<td>97.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.2708</td>
<td>94.51</td>
<td>3137</td>
<td>3</td>
<td>103.11</td>
<td>0.006</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.695</td>
<td>95.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>95.14</td>
<td>1426</td>
<td>3</td>
<td>34.37</td>
<td>0.002</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.69</td>
<td>95.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.515</td>
<td>95.235</td>
<td>2362</td>
<td>3</td>
<td>11.5</td>
<td>0.001</td>
<td>Variable Manning Roughness Coefficients (see Table 3)</td>
<td>Nonlinear</td>
</tr>
<tr>
<td></td>
<td>5.615</td>
<td>95.378</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENT 45: Table 5: What is "Ha"? Is this "ha" (hectare)?
RESPONSE 45: Yes, We mean hectare. We agree with the Referee and will change "Ha" to "ha"

COMMENT 46: Table 5: Font size in the bottom row is slightly bigger than others.
RESPONSE 46: Thank you very much. We will correct the font size.
Response to Referee 1: Assessing the tsunami mitigation effectiveness of a planned Banda Aceh Outer Ring Road (BORR), Indonesia

by Syamsidik et al.

Fig. 1 The study area (revised).

Figure 2. The Multi-layered tsunami defense as depicted by Koshimura et al. (2014)

The equations 4 and 6 that confirm the use of ϕ
\[
\frac{\partial \eta}{\partial t} + \frac{1}{R \cos \phi} \left(\frac{\partial P}{\partial \eta} + \frac{\partial}{\partial \phi} \left(\cos \phi Q \right) \right) = \frac{\partial h}{\partial t}.
\]

(4)

\[
\frac{\partial Q}{\partial t} + \frac{1}{R \cos \phi} \frac{\partial}{\partial \eta} \left(PQ \right) + \frac{1}{R} \frac{\partial}{\partial \phi} \left(Q^2 \right) + \frac{gH}{R} \frac{\partial \eta}{\partial \phi} + JF + F_j = 0.
\]

(6)

Fig. 3 an example of revised Fig. 12 in the manuscript to show more visible lines and legends. Similar revisions have been done to Transect B and Transect C.

Table 1. Information on the Setup of the six layers for COMCOT Simulations

<table>
<thead>
<tr>
<th>Layer</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Number of Grid</th>
<th>Ratio</th>
<th>Grid size (m)</th>
<th>Time Step (sec.)</th>
<th>Manning Roughness Coefficients</th>
<th>SWE type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>88.1</td>
<td>1772</td>
<td>1856</td>
<td>0.1</td>
<td>none</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14.93</td>
<td>102.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>91</td>
<td>1920</td>
<td>928</td>
<td>0.05</td>
<td>none</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.08</td>
<td>92.05</td>
<td>3899</td>
<td>309.33</td>
<td>0.017</td>
<td>none</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8.98</td>
<td>97.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.2708</td>
<td>94.51</td>
<td>3137</td>
<td>103.11</td>
<td>0.006</td>
<td>none</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.695</td>
<td>95.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>95.14</td>
<td>1426</td>
<td>34.37</td>
<td>0.002</td>
<td>none</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.69</td>
<td>95.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.515</td>
<td>95.235</td>
<td>2362</td>
<td>11.5</td>
<td>0.001</td>
<td>Variable Manning Roughness Coefficients (see Table 3)</td>
<td>Nonlinear</td>
<td></td>
</tr>
</tbody>
</table>
Interactive comment on “Assessing the tsunami mitigation effectiveness of a planned Banda Aceh Outer Ring Road (BORR), Indonesia” by Syamsidik et al.

Anonymous Referee #2

First of all, we thank to Referee #2 comments on our paper posted for discussion on December 5, 2018. We regard the comments with high appreciation and attempt to include them in our revised manuscript. The following sections are our responses to the comments.

COMMENT 1:
For the earthquake scenarios, two magnitudes Mw 8.5 and Mw 9.15 are chosen. More justification is required to explain how the fault parameters (e.g. focal depth, dip and slip angle and slip value) are decided. For example, providing some evidences for the fault geometry.

RESPONSE 1:
Koshimura et al. (2009) proposed fault parameters for the 2004 Indian Ocean tsunami case. The fault was divided into 6 segments where accumulative energy is similar to total energy generated by the fault. The following table shows the details of the fault proposed by Koshimura et al. (2009).

<table>
<thead>
<tr>
<th>Segment</th>
<th>H (km)</th>
<th>L (km)</th>
<th>W (km)</th>
<th>Strike (°)</th>
<th>Dip (°)</th>
<th>Slip (°)</th>
<th>Dislocation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>200</td>
<td>150</td>
<td>323</td>
<td>15</td>
<td>90</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>125</td>
<td>150</td>
<td>335</td>
<td>15</td>
<td>90</td>
<td>12.6</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>180</td>
<td>150</td>
<td>340</td>
<td>15</td>
<td>90</td>
<td>15.1</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>145</td>
<td>150</td>
<td>340</td>
<td>15</td>
<td>90</td>
<td>7.0</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>125</td>
<td>150</td>
<td>345</td>
<td>15</td>
<td>90</td>
<td>7.0</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>380</td>
<td>150</td>
<td>7</td>
<td>15</td>
<td>90</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Detail of the location of the segments can be seen in the following figure.

![Figure 1. Location of the six segments of the faults proposed by Koshimura et al. (2009).](image)

The result of this multi-fault has been validated at the onshore area of Banda Aceh using measured flow-depths and flow-heights. More complete explanation of this can be seen in Koshimura et al. (2009). We decide not to include the table and the figure to allow readers to read a more complete and rigour studies done by Koshimura et al. as briefly explained here.
For 8.5 Mw, we follow suggestions made by Horspool et al. (2014).
We based our simulations on the parameters with strike of 329°, dip 8.0°, slip 110°, and depth of 10 km. The 8.5 Mw simulation use single fault scenario where the location of the fault has been moved along the fault lines to obtain maximum impacts on Banda Aceh coast. We agree with the referee to add the explanation of the 8.5 Mw simulation fault scenario in or revised manuscript. Please see section 3.3 Earthquake scenarios in revised manuscript.

COMMENT 2:
Figure 10 and Figure 11, caption, correct to “. . .with BORR (right)”

RESPONSE 2:
Thank you for the detail correction. We will revise the caption on Figure 10 and Figure 11 “without BORR (right)” with “with BORR (right)”

COMMENT 3:
Table 1. In COMCOT, the Manning roughness coefficients will not function when the SWE type is “Linear”, so the second last column should be set to “None” when the SWE type is “linear”

RESPONSE 3:
Thank you, we will replace Manning Roughness Coefficients “0.02” to “None” as suggested. The revised table can be seen as follows (Table 1).

<table>
<thead>
<tr>
<th>Layer</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Number of Grid</th>
<th>Ratio</th>
<th>Grid size (m)</th>
<th>Time Step (sec.)</th>
<th>Manning Roughness Coefficients</th>
<th>SWE type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>88.1</td>
<td>1772</td>
<td>1856</td>
<td>0.1</td>
<td>none</td>
<td>Linear</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14.93</td>
<td>102.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>91</td>
<td>1920</td>
<td>2</td>
<td>928</td>
<td>0.05</td>
<td>none</td>
<td>Linear</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.08</td>
<td>92.05</td>
<td>3899</td>
<td>3</td>
<td>309.33</td>
<td>0.017</td>
<td>none</td>
<td>Linear</td>
</tr>
<tr>
<td>3</td>
<td>8.98</td>
<td>97.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.2708</td>
<td>94.51</td>
<td>3137</td>
<td>3</td>
<td>103.11</td>
<td>0.006</td>
<td>none</td>
<td>Linear</td>
</tr>
<tr>
<td>4</td>
<td>6.695</td>
<td>95.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>95.14</td>
<td>1426</td>
<td>3</td>
<td>34.37</td>
<td>0.002</td>
<td>none</td>
<td>Linear</td>
</tr>
<tr>
<td>5</td>
<td>5.69</td>
<td>95.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.515</td>
<td>95.235</td>
<td>2362</td>
<td>3</td>
<td>11.5</td>
<td>0.001</td>
<td>Variable Manning Roughness Coefficients (see Table 3)</td>
<td>Nonlinear</td>
</tr>
<tr>
<td>6</td>
<td>5.615</td>
<td>95.378</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessing the tsunami mitigation effectiveness of a planned Banda Aceh Outer Ring Road (BORR), Indonesia

Syamsidik1,4, Tursina1,3, Anawat Suppasri2, Musa Al’ala1,3, Mumtaz Luthfi1, and Louise K. Comfort5

1Tsunami and Disaster Mitigation Research Center (TDMRC), Syiah Kuala University, Jl. Prof. Dr. Ibrahim Hasan, Gampong Pie, Banda Aceh 23233, INDONESIA
2International Research Institute of Disaster Science (IRIDeS), Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai 980-0845, JAPAN, email: suppasri@irides.tohoku.ac.jp
3Graduate student at Civil Engineering Department, Syiah Kuala University, Jl. Syeh Abdurrauf No.7, Banda Aceh 23111, INDONESIA
4Civil Engineering Department, Faculty of Engineering, Syiah Kuala University, Jl. Syeh Abdurrauf No. 7, Banda Aceh 23111, INDONESIA
5Graduate School of Public International Affairs, University of Pittsburgh, Pittsburgh, US, email: lkc@pitt.edu

Correspondence to: Syamsidik (syamsidik@tdmrc.org, syamsidik@unsyiah.ac.id)

Abstract. This research aimed to assess the tsunami flow velocity and height reduction produced by a planned elevated road spanned parallel to the coast of Banda Aceh called Banda Aceh Outer Ring Road (BORR). The road will transect several lagoons, settlements, and bare land around the coast of Banda Aceh. Beside its main function to reduce traffic congestion in the city, the BORR is also proposed to reduce impacts of future tsunamis. Cornell Multi-Grid Coupled Tsunami Model (COMCOT) was used to simulate eight scenarios of the tsunami. One of them was based on the 2004 Indian Ocean tsunami. Two magnitudes of earthquake were used, that is, 8.5 and 9.15 Mw. Both the earthquakes were generated from the same source location as in the 2004 case, around the Andaman Sea. Land use data of the innermost layer of the simulation area were adopted based on the 2004 condition and the land use planning of the city for 2029. The results of this study reveal that the tsunami inundation area can be reduced by about 9% by using the elevated road for earthquake magnitude 9.15 Mw and about 22% for earthquake magnitude 8.5 Mw. Combined with the land use planning 2029, the elevated road could reduce the maximum flow velocities behind the road by about 72%. Notably, the proposed land use for 2029 will not be sufficient to deliver any effects on the tsunami mitigation without the elevated road structures. We recommend the city to construct the elevated road as this could be part of the co-benefit structures for tsunami mitigation. The proposed BORR appears to deliver significant reduction of impacts in the smaller intensity tsunamis compared to the 2004 Indian Ocean tsunami.

1 Introduction

Tsunami mitigations by means of structural measure are not always affordable in the case of developing countries. In contrast, the threats posed by tsunami are real and have the potential to deliver severe impacts on the coastal area and the community at risk. Banda Aceh is one of the most severely affected cities due to the 2004 Indian Ocean tsunami; however, it is difficult to follow the guidelines demonstrated by the advanced countries using developing massive physical structures to mitigate the future impacts of tsunami. This is still beyond the financial capacity of the city. In contrast, based on the probabilistic tsunami hazard assessment, this area could potentially be affected by a tsunami larger than 0.5 m, that is, about
10% higher, annually (Horspool et al., 2014). Therefore, seeking alternative and economic ways to mitigate impacts of the tsunami could help the city in creating a more resilient region. Modifying the morphology and land use of the coastal front of the area can reduce the tsunami wave energy (Ohta et al., 2013). The nonlinearity effects generated on the inland tsunami wave run-up are closely related to the local topography of the area (Mori et al., 2017). The key parameters of reducing damages due to tsunami waves are decreasing the wave velocity and the inundation depths (Kreibich et al., 2009; Yamamoto et al., 2006). These are better represented by a quadratic Froude Number (F_{r}^2) (Ozer and Yalciner, 2011). Constructing a high seawall is costly. In the case of Banda Aceh, the estimated maximum tsunami height based on the 2004 Indian Ocean tsunami was 15 m (Lavigne et al., 2009). Only the sea walls higher than 5 m could contribute to reducing the destructive effects of tsunami as in the case of the 2011 Tohoku tsunami (Nateghi et al., 2016). The cost of the structure is unarguably expensive. Furthermore, the tsunami wave has a long wave characteristics, where blocking the wave will only indicate the delaying time of the wave to reach a certain area behind the seawall due to scour process (Chen et al., 2016). Inequalities of the hydrostatic forces generated around the seawalls and the process of overflowing will occur and destroy the structures (Ozer et al., 2015); however, this could reduce the tsunami wave energy (Guler et al., 2018).

Another way to reduce the tsunami wave energy is by using an elevated road. The elevated road can be functioned as an inland tsunami defense structure that could stop the tsunami wave or reduce its intensity as revealed in the case of the 2011 Great East Japan Earthquake and Tsunami (GEJET) (Goto et al., 2012a). In the GEJET case, the Tobu Highway in Sendai was the maximum limit of the tsunami inundation area in Sendai of Miyagi Prefecture in Japan (Abe et al., 2012; Goto et al., 2012b; Sugawara et al., 2012). A new 6-m elevated road is now being constructed in Sendai, for which this idea was adapted from the tsunami mitigation effects revealed by the Tobu Highway structure during the 2011 Tohoku tsunami (Suppasri et al., 2016). Japan is an exemplary nation that promotes tsunami multi-layered defense system, either by structural or nonstructural mitigation. Tsunami multi-defense is a set of structures to mitigate impacts of tsunami. The concept was introduced in Tohoku region of Japan during rehabilitation and reconstruction process following the 2011 tsunami. The structures consist of sea wall, coastal forests, a canal that is parallel to coastline, escape hills, and elevated roads. From structural mitigation, the GEJET affected areas have been developing several massive structures to prevent future tsunami losses (Strusinska-Correira, 2017; Koshimura et al., 2014; Pakoksung et al., 2018).

As a result of its population and economic growth, Banda Aceh is planning to construct a road transect as a response to the traffic demands of the city. One of the most recently introduced plans is a road that will circle the city from its periphery. The proposed road is named as Banda Aceh Outer Ring Road (BORR). Initially, the road is only introduced by a road transect and the detail structure of the road is yet to be decided. This is part of a long-term development program as stipulated in its spatial planning that aims to regulate the city planning until 2029 (Government of Banda Aceh, 2009). In the spatial planning, no new significant tsunami mitigation infrastructure has been included. The structural mitigation facilities that were developed between 2005 and 2010 include four escape buildings, one tsunami museum that also functioned as tsunami escape building, and several escape routes. A-7 km revetment structure was constructed between 2006 and 2010 to reshape the city’s coastline and to prevent further coastal erosion problem (Syamsidik et al., 2015).

To address the gap as stated earlier, this research aimed to investigate the potential tsunami destructive impacts reduction through an elevated road structure parallel to the coastline of Banda Aceh (BORR). Cornell Multi-Grid Coupled Tsunami Model (COMCOT), a two-dimensional horizontal model was utilized to numerically simulate the tsunami characteristics as well as to evaluate the reduction impacts of BORR. Two types of land use maps in 2004 and 2029 were used to evaluate the mitigation effect of future tsunamis. The evaluation of the performance of the elevated road to reduce the tsunami wave energy may contribute to a better city planning of Banda Aceh in a long-term development program.

2 The Study Area
Banda Aceh is situated at the northern part of Sumatra Island and is the largest city in the Aceh Province. Figure 1 presents the city location. The topography of the city is flat with no hilly region. The hilly region is located around 7 km outside the city’s borders. There are several coastal lagoons situated at the northern part of the city. The city was severely damaged by the 2004 Indian Ocean tsunami, which caused death of about 90,000 people (Doocy et al., 2007). Prior to the 2004 tsunami, no knowledge was available regarding the potential tsunami that resulted in zero prevention of the hazard. During the rehabilitation and reconstruction process led by Aceh-Nias Rehabilitation and Reconstruction Agency (BRR Aceh-Nias), the city faced serious challenges in relocating its people to a safer area. This resulted in several houses to be built at the coastal area. Initially, it was proposed to desert about 500 m from its coastal line from any settlement and was aimed for coastal vegetation as a part of the tsunami mitigation or was named as green belt area. This was mentioned in the Master Plan for Rehabilitation and Reconstruction composed by Indonesia Development and Planning Agency (Bappenas Indonesia) (BAPPENAS, 2005). The 14-year rehabilitation and reconstruction process until 2018 has failed to make it happen.

At present, the coastal population of the city is growing significantly due to return migration from the affected community and more affordable land prices/house rent fees in the coastal area compared to other places in the city (Syamsidik et al., 2017). Figure 1 presents the study area of this research. In Figure 1, several tsunami flow depths data of this city, published by NOAA, are presented in red dots (NOAA, 2018); by Tsuji et al. (2006), are indicated as blue dots; and in the forms of tsunami poles, are represented by yellow triangles. These flow depths were later incorporated in the tsunami numerical results validation. Figure 2 presents the condition of the coastal area of Banda Aceh based on an aerial image captured by a drone in February 2018. There is a-7 km revetment structure constructed along the city coast to immediately recover the eroded coastline and to create a barrier between the sea and ponds. The revetment was completed in 2010. Later in 2015, the government constructed a road transect at the leeward of the revetment; however, since the revetment is often being overtopped by waves, the road is frequently damaged by the waves. Figure 3 presents the revetment structure and the road behind the revetment.

A new spatial planning and regulation of the city was released in 2009. This was modified in 2012 to accommodate the tsunami reconstruction process and few ideas to mitigate the disaster impacts, such as tsunami; however, no concrete measure was included in the spatial planning document to structurally mitigate the tsunami impacts.

Under the revision process of the spatial planning in 2012, the Government of Banda Aceh set up a new plan to construct a road due to the traffic congestion in the city. The road was proposed to cater the mobility of the people from the periphery of the city and was named as Banda Aceh Outer Ring Road (BORR). Japan International Cooperation Agency (JICA) has once studied the project. At present, the road project is put on hold due to the increase in the land prices, but is still in the formal document of the city development. A series of discussions were conducted to include the tsunami mitigation measures in the new planned road. There is an opportunity to modify the design of the road to an elevated road. Some alternatives were drawn. One of the most intense discussions was to elevate the road to 3 m from the initial ground; however, the impacts of the planned elevated road on tsunami wave energy are not clear. The BORR transect is presented in Figure 1. The BORR will pass some area of salt marshes where ponds existed as the major land use types before tsunami. After the tsunami, large area of the fishponds were damaged and were never been recovered. In the new spatial planning regulation of the city, the area will be kept as it is and only minor changes are proposed.

3 Methods

3.1 Tsunami numerical simulations

To measure the impacts of the tsunami waves on the city, two scenarios of the coastal morphology were considered, that is, (1) without BORR and (2) with BORR. Tsunami simulations were performed using the Cornell Multi-Grid Tsunami
Coupled Model (COMCOT). The COMCOT is a hydrostatic model that uses leap-frog finite difference method to solve the shallow water equations (SWEs) with a staggered scheme. Both the nonlinear and linear shallow water equations can be selected in the model. COMCOT is a two-dimensional horizontal model that calculates the depth-averaged velocities. The linear shallow water equations in spherical coordinate system used in COMCOT are as follows.

\[
\frac{\partial \eta}{\partial t} + \frac{1}{R \cos \varphi} \left(\frac{\partial p}{\partial \varphi} + \frac{\partial}{\partial \varphi} (\cos \varphi \, Q) \right) = -\frac{\partial h}{\partial t} \tag{1}
\]

\[
\frac{\partial p}{\partial t} + \frac{gh}{R \cos \varphi} \frac{\partial \eta}{\partial \varphi} - f Q = 0, \tag{2}
\]

\[
\frac{\partial Q}{\partial t} + \frac{gh}{R} \frac{\partial \eta}{\partial \varphi} + f P = 0, \tag{3}
\]

Meanwhile, for nonlinear shallow water equations, COMCOT applies the following equations.

\[
\frac{\partial \eta}{\partial t} + \frac{1}{R \cos \varphi} \left(\frac{\partial p}{\partial \varphi} + \frac{\partial}{\partial \varphi} (\cos \varphi \, Q) \right) = -\frac{\partial h}{\partial t} \tag{4}
\]

\[
\frac{\partial p}{\partial t} + \frac{1}{R \cos \varphi} \left(\frac{\partial}{\partial \varphi} \left(\frac{p^2}{\cos \varphi} \right) + \frac{1}{R} \frac{\partial}{\partial \varphi} \left(\frac{p Q}{\cos \varphi} \right) \right) + \frac{gh}{R \cos \varphi} \frac{\partial \eta}{\partial \varphi} - f Q + F_x = 0, \tag{5}
\]

\[
\frac{\partial Q}{\partial t} + \frac{1}{R \cos \varphi} \left(\frac{\partial}{\partial \varphi} \left(\frac{Q^2}{\cos \varphi} \right) + \frac{1}{R} \frac{\partial}{\partial \varphi} \left(\frac{Q}{\cos \varphi} \right) \right) + \frac{gh}{R} \frac{\partial \eta}{\partial \varphi} + f P + F_y = 0, \tag{6}
\]

\[
f = \Omega \sin \varphi, \tag{7}
\]

\[
F_x = \frac{\eta^2}{H^{7/5}} P (P^2 + Q^2)^{1/2}, \tag{8}
\]

\[
F_y = \frac{\eta^2}{H^{7/5}} Q (P^2 + Q^2)^{1/2}, \tag{9}
\]

\[
H = \eta + h \tag{10}
\]

Here, \(P\) is the volume fluxes in x-direction (east-west direction), which is equal to \(hu\), and \(Q\) is the volume fluxes in y-direction (south-north direction), which is equal to \(hv\), where \(h\) is the depth at the grid to the mean sea level, and \((u,v)\) are the velocities at x- and y-direction, respectively. Furthermore, \(\eta\) is the water surface elevation, \((\varphi, \psi)\) are the latitude and longitude for spherical coordinate system, \(R\) is the earth radius, \(g\) is gravitational acceleration, and \(h\) is the water depth at the grid. The component of \(-\partial h/\partial t\) denotes the effect of transient seafloor motion; the Coriolis force coefficient due to the earth’s rotation is expressed as \(f\). Meanwhile, \(\Omega\) is for the rotation rate of the earth; \(H\) is the total water depth. \(F_x\) and \(F_y\) represent the bottom friction in the \(\psi\) and \(\varphi\) direction, respectively; and \(n\) is Manning’s roughness coefficient. A complete explanation of the COMCOT module can be referred to Wang (2009).

3.2 Computational regions

We applied six layers of simulation domains, starting from Layer 1 that covers the largest numerical domain including the tsunami source around the Andaman Sea. The innermost layer was Layer 6 that encompasses the Banda Aceh city and has the smallest size of the grid. The nested grid system also allows us to include the nonlinear effects of the tsunami waves in the COMCOT simulation. Details of the grid specification are listed in Table 1. All layers in the simulation apply spherical coordinate system. Figure 4 presents the simulation layers applied in this study.

Bathymetry data for Layers 1–4 were adopted from the GEBCO data with resolution of 1 min for all scenarios. Meanwhile, for Layers 5 and 6, we used the bathymetry data measured by the Geospatial Information Agency of Indonesia for the case of tsunami 2004. For the scenarios of 2029, we used the bathymetry data measured by the Aceh Public Works Department measured in 2007. Topography data measured by the Japan International Cooperation Agency (JICA) in 2005 were used for land topography data. The data were later updated by the Banda Aceh Development and Planning Agency. For the elevated road, the topography data along the transect were altered to plus 5.0 m from the mean sea level. The elevations were
considered affordable in terms of the construction cost for the city. The structure of the elevated road was assumed to sustain the tsunami wave forces. For these, no scouring or altered ground elevation were made due to the tsunami wave forces.

3.3 Earthquake scenarios

We used two magnitudes of the earthquake in the simulations, that is, magnitude 8.5 and 9.15 Mw. Based on the probabilistic tsunami hazards assessment, the magnitude 8.5 Mw could occur once in about 200–300 years (Sengara et al., 2008; Suppasri et al., 2012a, Suppasri et al., 2012b), or in another study, it was said to have an exceedence return period by 100 years (Burbidge et al., 2009). Here the 8.5 Mw earthquake has the focal depth of 10 km, with a displacement of 8.3 m, where the dip and slip angles were 8° and 110°, respectively. The strike angle was set to 305° and the slip angle was 110°. Furthermore, the 8.5 Mw fault scenario was set to give maximum impacts on Banda Aceh coast. Therefore, the location of the fault was moved along the fault lines to find the right location to deliver the maximum impacts. The magnitude 8.5 Mw was calculated as a single fault. Meanwhile, the multifault method was adopted for 9.15 Mw. The fault details of the 9.15 Mw followed Koshimura et al. (2009). Dimension of the rupture area was calculated using Wells and Coppersmith Formulae (Wells and Coppersmith, 1994). Deformation of the seafloor caused by the rupture area was calculated following the formulae suggested by Masingha and Smylie (1971) and Okada (1985). Initial sea surface level as results of earthquake generation are presented in Figure 5. The land use for Layer 6 was adopted based on two conditions, that is, (1) land use of the city in 2004 before the Indian Ocean tsunami and (2) land use of the city as in Banda Aceh Spatial Planning regulation for 2029. The impacts of the elevated road by imposing two scenarios of the road were then compared, that is, (1) with BORR and (2) without BORR.

3.4 Data and validation

There are 8 simulations in total as listed in Table 2. Validation of the simulation was done by comparing the Simulation #211 with the heights of the tsunami inundation in Banda Aceh as marked by several tsunami poles in the city (Sugimoto et al., 2010). We used the Aida functions to validate the numerical results (Aida, 1978) that are based on K and κ as follows.

$$\log K = \frac{1}{n} \sum_{i=1}^{n} \log K_i,$$

$$\log \kappa = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log K_i)^2 - (\log K)^2 },$$

$$K_i = \frac{H_{obs-i}}{H_{sim-i}}$$

where, H_{obs-i} is the observed tsunami inundation height or depth at point i and H_{sim-i} is the tsunami inundation height or depth based on the simulation at point i. The value of κ represents the variance of K_i. Meanwhile, K represents the mean of K_i. Takeuchi et al. (2005) suggested that the model results are in good agreement if $0.8 \leq K \leq 1.2$ and $\kappa \leq 1.60$. Another study also suggests that if the value of κ can be complied and the value of K is slightly >1.05, the results can also be classified as “Good Enough” (Koshimura et al., 2009).

Variations in the land use were included by modifying the Manning roughness coefficients based on land cover of the area. Table 3 presents the values of the Manning coefficients included in the simulations as suggested by Li et al. (2012). Distribution of the Manning coefficients used in the two types of land use, that is, the 2004 and 2029 land use, is presented in Figures 6 and 7, respectively.
4. Results

4.1 Validation of the 2004 Indian Ocean Tsunami

To validate the result, we used the 2004 Indian Ocean tsunami case with land use form adopted the situation before the tsunami (without BORR) or Simulation #211 as listed in Table 2. Validations of the initial wave forms and offshore tsunami wave propagation have been done by several studies (Koshimura et al., 2009; Suppasri, 2011; Suppasri et al., 2010). The studies used the water level around a transect in the Andaman Sea captured by JASON 1 Satellite about 2 h after the 9.15 Mw earthquake on December 26, 2004. The agreement of the simulated offshore tsunami wave heights was found in good accordance by the two aforementioned studies. For the tsunami inundation heights and depths, the results of the validation are presented in Table 4 using Aida parameters calculated based on the equations (11)–(13). Based on the results, we confirmed that the simulated reports are in accordance with the observed data provided by the NOAA data and tsunami poles in the city.

4.2 Impacts of the Elevated Roads

Using the two magnitudes of earthquakes to generate tsunami waves, the impacts of BORR were tested. The reduction of tsunami velocity due to obstacles, naturally and man-made structures, have been proven correct by previous researches (e.g. Nandasena et al., 2012; Matsutomi and Okamoto, 2010). Sea walls as well as other types on-shore structures will reduce energy of the tsunami mainly by reducing the wave’s velocity. Froude numbers will be reduced as the tsunami hit natural barriers or other solid man-made structures. The following section elucidates a series of comparisons of the maximum wave run-up in Banda Aceh.

4.2.1 Magnitude 8.5 Mw

Distribution of the tsunami flow depths caused by the 8.5 Mw of earthquake is presented in Figure 9. Due to the BORR structure, the area of the inundation could be reduced by about 22%. Table 5 provides comparisons for all the scenarios for tsunami inundation area. It is observed that the impacts of the land use changes are not significant to further reduce the tsunami inundation area. The 2029 land use, if combined with BORR, will only further reduce the tsunami inundation area by about 1.2%. The BORR coupled with land use changes can reduce the inundation area that is deeper than 2 m by about 25%.

Figure 12 provides comparisons of the tsunami wave heights for the three transects indicated in Fig. 1 that are relatively perpendicular to the coastline. At all transects, we could observe that the magnitude 8.5 Mw could still generate tsunami heights by about 3 m along the coastline. Tsunami could cover the BORR structure, in particular, at the area around transect B. Interestingly, the tsunami inundation area behind the BORR structure at transect B is mostly located at the salt marsh area where no population resides. At the other transects the tsunami waves could be stopped by the BORR structure, provided that the structure can sustain the stability test produced by the waves. Without BORR (scenarios #111 and #112), the tsunami wave could reach about 2 km from the coastline as presented in transect A (Fig. 12). With BORR (scenarios #121 and #122), the tsunami run-up could be reduced to the area of about 0.8 km from the coastline (see transect B in Fig. 12). The area where the bridges are located, the tsunami waves could travel about 6 km along the main rivers. Considering that the river embankment is higher than 1.5 m from the original soil surface, the tsunami wave along the river will be able to retain itself in the river’s main channel. At present, the river embankment along this city is done at 3 m from the soil surface under several projects undertaken between 1989 and 1992.
This was also proven true in the case of dike impacts on reducing the tsunami wave heights during the 2011 Tohoku earthquake and tsunami on the Ishinomaki city of Japan (Takagi and Bricker, 2014). Interestingly, the inland structures as represented by the elevated road managed to stop the tsunami inundation. This was possible as the elevated road could reduce the velocity of the tsunami wave.

4.2.2 Magnitude 9.15 Mw

Figure 10 presents the comparison on the maximum tsunami inundation depths based on the land use types as in the condition before the 2004 Indian Ocean tsunami without BORR to the condition with BORR for earthquake magnitude of 9.15 Mw. The comparison clearly indicates the changes made by the BORR in terms of tsunami inundation depths. In front of BORR, the tsunami waves could be higher compared to the landward area of the road. In contrast, the tsunami inundation area could be 8.60% smaller if the road was constructed.

Similar effects of the BORR structures on the distribution of tsunami wave depths are presented in Figure 11 for the 2029 land use planning. Using the 2029 planned land use types with BORR, the wave heights could be decreased at the area behind the road. In contrast, if we compare between Figure 10 (left) and Figure 11 (left), we would notice that the impacts of changing land use types as it is planned for 2029, will not have any significant difference in terms of the tsunami inundation depths and areas. Therefore, the changes of the land use alone are not sufficient to reduce the adverse impacts of the tsunami waves if the magnitude of the earthquake is 9.15. BORR coupled with the land use change (for 2029) could reduce the tsunami inundation area by about 9.7%.

All observed transects reveal similar effects of the BORR on the maximum inundation depths. The depths could be decreased after the BORR structure. Just at the leeside of the BORR structure, the depths will be decreased to about 4 m with the structure for earthquake magnitude of 9.15 Mw. This is about 28.5% lower than the situation without BORR. Figure 12 presents the comparison of maximum tsunami inundation depths for all the simulation scenarios for transects A, B, and C. Maximum wave velocities at the area behind the proposed elevated road are listed in Table 6. The results proved that the structure could significantly stop the tsunami in the case of earthquake magnitude of 8.5 Mw. For the earthquake magnitude of 9.15 Mw, the maximum velocities can be reduced by about 50% provided the land use is still the same as in 2004 and about 72% if the land use for 2029 is implemented. Herein, the modification of the land use combined with the BORR structures could potentially reduce the damages of the tsunami waves by about 22% lesser compared to the land use as in the 2004 case.

5 Discussions and Limitations of the Study

Effects of the elevated roads to limit the tsunami inundation demonstrated in the case of 2011 Great East Japan tsunami has inspired this research for Banda Aceh. This city was once severely damaged by the 2004 Indian Ocean tsunami. The inland structures and modification of the land use could help mitigate the impacts of tsunami waves. In our study, the proposed elevated roads (BORR), planned to be constructed in Banda Aceh, which will be relatively parallel to the coastline, are expected to reduce the tsunami wave energy. This research found that the elevated road could effectively mitigate the tsunami generated by earthquake magnitudes of 8.5 and 9.15 Mw, generated around the Andaman Sea with different percentages of reduction. The larger the magnitude of the earthquake, less effective will be the reduction in the tsunami wave energy through BORR coupled with land use changes. As the land use is a dynamic variable, it is important to note that certain land use controls to ensure the tsunami reduction effectiveness are necessary.

Based on the land use plan of Banda Aceh for 2029, the city will reclaim certain area around the coastal lagoons/salt marshes and will preserve some area of the lagoons as it is at present (salt marshes with mangrove forest). The lagoons play a significant role as they functioned as dug pools behind the revetment structures. In the case of overflow, the lagoons have the
potential to reduce the tsunami wave energy as similar to that observed in the Teizan Canal of Tohoku area during the 2011 tsunami (Tokida and Tanimoto, 2014). The mangrove forests are also crucial in reducing the energy of tsunami waves as proven by several researches (see Yanagisawa et al., 2009; Iimura and Tanaka, 2012; Tanaka et al., 2014; Strusińska-Correia et al., 2013). In the case of inland embankment structure (such as the BORR structure in this study), the seaward coastal forest can reduce the possibility of overflow event. Furthermore, the landward forest could reduce the drag force behind the forest (Igarashi and Tanaka, 2018) and stop the tsunami debris. Therefore, it is important to preserve the area for the mangrove forest and salt marshes. Tsunami wave heights, as high as 3 m, can be reduced up to 1.5 m behind the structure of the elevated road, provided that the road structure is not breached. The concept of elevating the road to help mitagate impacts of the tsunami could be regarded as co-benefits development concept simultaneously integrating the traffic demands and tsunami mitigation. A similar concept was observed in Sri Lanka to check the possibilities elevating train railway using embankment type of railway to reduce smaller intensity of tsunamis (Samarasekara et al., 2017). Adopting the principles of tsunami mitigation in the existing plan of the structure could also derive other impacts, such as the need to modify the city drainage system. This study has certain limitations. Our proposed elevated road structure is an embankment type that has the elevation of plus 5.0 m from the mean sea level. This type of structure will soon be covered by the tsunami waves if the magnitude of the earthquake is larger than 8.5 Mw. Since the waves are characterized as long-waves, scouring effects may occur immediately after the overflowing process. Furthermore, the leeside of the embankment will be easily damaged in the case of overflowing at a rubble mound type embankment (Aniel-Quiroga et al., 2018). The extreme difference on the hydrostatic pressures between the seaward and leeward direction of the BORR should also be considered. This could destabilize the structure (Ozer et al. 2015). This study excluded the damages that occurred due to the overflow process and scouring. Moreover, the density of the buildings was not considered as a parameter that could fluctuate the manning roughness coefficients as suggested by the previous researches (Kotani et al., 1998; Dutta et al., 2007).

6 Conclusions and Recommendations

This study explores the possibility to mitigate the impacts of future tsunami on Banda Aceh based on eight scenarios of numerical simulations. We used two magnitudes of earthquake that generate tsunami, that is, magnitudes 8.5 and 9.15 Mw. An elevated road and land use planning for 2029 were included in the simulations to test the possibility to adopt the concept of co-benefits structure for tsunami mitigation. Tsunami multi-layer defense system as applied by Tohoku region after the 2011 Great East Japan Earthquake and Tsunami cannot be afforded for the tsunami prone cities in the developing countries, such as for Banda Aceh. There is a potential way to include the structural tsunami mitigation by modifying the coastal area profile. One of the possibilities for Banda Aceh is by elevating a planned road parallel to the coast, namely, Banda Aceh Outer Ring Road (BORR). Based on the simulations, the elevated road, by reclaiming plus 5.0 m from the mean sea level, could reduce the inundation area by about 9% and 22% in the case of 9.15 and 8.5 Mw of earthquake, respectively. The wave heights and the wave velocities could also be reduced using the elevated road structures. Notably, the land use planning alone without BORR will cause insignificant reduction in the tsunami wave heights and tsunami inundation area. Therefore, the elevated road coupled with the 2029 land use planning is expected to reduce the tsunami risks for the city, if implemented.

Based on the results, we recommend the Banda Aceh city to conduct several tsunami mitigation measures, as follows:

a. to control the increase in population and settlements around the coastal area;
b. to control the land use of the coastal area, in particular, the area in front of the planned BORR transect and to maintain it as a nonresidential area;
c. to adopt the elevated roads in the BORR constructions as this will significantly help the city to cope with future tsunamis;

d. to preserve the salt marshes area around the coast, as this would also help to reduce the tsunami impacts. The salt marshes area could also be planted with mangroves or other brackish water vegetation that would increase the manning roughness coefficients of the area. This further will reduce the speed of the tsunami waves.

Acknowledgments

The authors are grateful for the research grant from the Partnership Enhanced Engagement in Research (PEER) Cycle 5 sponsored by the USAID and National Academies of Sciences, Engineering, and Medicines of United States (NAS) under research grant #5-395, title Incorporating climate change induced sea level rise information into coastal cities’ preparedness toward coastal hazards with NAS Subaward No. 2000007546. A visit of Prof. Anawat Suppasri (co-author of this article) to Banda Aceh and paper fine-tuning activities were performed under the World Class Professor Program (WCP) Scheme B, promoted by Ministry of Research, Technology, and Higher Education of Indonesia (RISTEKDIKI) in 2018 (Contract No. No. 123.41/D2.3/IKP/2018). Digitizing certain spatial data for land use and elevated roads was done under the PKLN of RISTEKDIKI Program Grant No. SK.60/UN11.2/SP3/2018 Year 2018, title Mitigating Impacts Of Tsunami Waves On Coastal Structures And Harbor Facilities. The publication of this paper is also funded by IRIDeS of Tohoku University, Japan.

References

Igarashi, Y. and Tanaka, N.: Effectiveness of compound defense system of sea embankment and coastal forest against a tsunami, Ocean Engineering, 151, 246-256, 2018.

Li, L., Qiu, Q., and Huang, Z.: Numerical modeling of the morphological change in Lhok Nga, west Banda Aceh, during the 2004 Indian Ocean tsunami: understanding tsunami deposits using a forward modeling method, Natural Hazards, 64, 1549-1574, 2012.

Ozer, C. and Yalciner, A.C.: Sensitivity Study of Hydrodynamic Parameters During Numerical Simulations of Tsunami
Inundation, Pure Applied Geophysics, 168(11), 2083-2095, 2011.

Figure 1: The study area. The elevated road (yellow line) is part of the city’s development planning documents. There are 139 points of the 2004 tsunami heights measured by NOAA (red dots) (NOAA, 2018) and 56 locations of tsunami pole representing water marks based on eyewitness accounts (yellow triangles).
Figure 2: The situation of the coastal area of Banda Aceh based on aerial image taken in February 2018.
Figure 3. A 7-km embankment along the coast of Banda Aceh where a road was constructed at the leeward side of the embankment (Photo taken date: February, 2018).
Figure 4: Six simulation layers and the size of the grids (written in each layer) applied in COMCOT.
Figure 5: Initial wave forms of generated by the 9.15 Mw of earthquakes as proposed by Koshimura et al. (2009) (left) and by a hypothetical earthquake Magnitude 8.5 Mw (right).
Figure 6: Distribution of manning coefficients used in the simulation for land use types in 2004 (before the 2004 Indian Ocean tsunami).
Figure 7: Distribution of manning coefficients used in simulations for land use types as described in the Banda Aceh spatial planning regulation aimed to be implemented until 2029.
Figure 8: Comparisons between measured tsunami wave heights and simulation results.
Figure 9: Comparison of maximum tsunami inundation depths generated by 8.5 Mw earthquake with condition without BORR (left) and with BORR (right).
Figure 10: Maximum tsunami wave depths based on 9.15 Mw earthquake without BORR (left) and with BORR (right). The simulations were demonstrated by using land use types before the 2004 Indian Ocean tsunami.
Figure 11: Maximum tsunami wave depths based on 9.15 Mw earthquake without BORR (left) and with BORR (right). The simulations were based on 2029 land use planning of Banda Aceh.
Figure 12. The comparison of tsunami wave heights at transects A, B, and C based on scenarios with and without BORR.
Table 1. Information on the setup of the six layers for COMCOT simulations.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Number of Grid</th>
<th>Ratio</th>
<th>Grid size (m)</th>
<th>Time Step (sec.)</th>
<th>Manning Roughness Coefficients</th>
<th>SWE type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>88.1</td>
<td>1772</td>
<td>1772</td>
<td>1856</td>
<td>0.1</td>
<td>none</td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>14.93</td>
<td>102.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>91</td>
<td>1920</td>
<td>2</td>
<td>928</td>
<td>0.05</td>
<td>none</td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.08</td>
<td>92.05</td>
<td>3899</td>
<td>3</td>
<td>309.33</td>
<td>0.017</td>
<td>none</td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>8.98</td>
<td>97.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.2708</td>
<td>94.51</td>
<td>3137</td>
<td>3</td>
<td>103.11</td>
<td>0.006</td>
<td>none</td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>6.695</td>
<td>95.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>95.14</td>
<td>1426</td>
<td>3</td>
<td>34.37</td>
<td>0.002</td>
<td>none</td>
<td>Linear</td>
</tr>
<tr>
<td></td>
<td>5.69</td>
<td>95.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.515</td>
<td>95.235</td>
<td>2362</td>
<td>3</td>
<td>11.5</td>
<td>0.001</td>
<td>Variable Manning Roughness Coefficients (see Table 3)</td>
<td>Nonlinear</td>
</tr>
<tr>
<td></td>
<td>5.615</td>
<td>95.378</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Scenarios of the Numerical Simulations.

<table>
<thead>
<tr>
<th>Magnitude (Mw)</th>
<th>BORR Scenario</th>
<th>Land Use in Year</th>
<th>Code of Simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Without BORR</td>
<td>2004</td>
<td>#111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2029</td>
<td>#112</td>
</tr>
<tr>
<td></td>
<td>With BORR</td>
<td>2004</td>
<td>#121</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2029</td>
<td>#122</td>
</tr>
<tr>
<td>9.15</td>
<td>Without BORR</td>
<td>2004</td>
<td>#211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2029</td>
<td>#212</td>
</tr>
<tr>
<td></td>
<td>With BORR</td>
<td>2004</td>
<td>#221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2029</td>
<td>#222</td>
</tr>
</tbody>
</table>
Table 3. Manning Coefficients based on land cover of the area (Li et al., 2012)

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Manning’s Roughness Coefficient (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal Vegetation</td>
<td>0.035</td>
</tr>
<tr>
<td>Fish Ponds</td>
<td>0.017</td>
</tr>
<tr>
<td>Building</td>
<td>0.04</td>
</tr>
<tr>
<td>Sea</td>
<td>0.013</td>
</tr>
<tr>
<td>Soil</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Table 4. The validation results of the simulation using Aida parameters for Simulation #211.

<table>
<thead>
<tr>
<th>Model Results</th>
<th>Aida parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K)</td>
</tr>
<tr>
<td>NOAA Data ((n=139))</td>
<td>1.18</td>
</tr>
<tr>
<td>Tsunami Pole data ((n=56))</td>
<td>0.79</td>
</tr>
<tr>
<td>Tsuji et al., 2006 ((n=50))</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Table 5. Comparisons of tsunami inundation area based on the simulations.

<table>
<thead>
<tr>
<th>Magnitude of Earthquake</th>
<th>Land Use Type</th>
<th>Total area of Inundation (ha)</th>
<th>Area of Inundation deeper than 2 m (ha)</th>
<th>% of total decrease</th>
<th>% of decrease for area deeper than 2 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5 Mw</td>
<td>2004 without BORR</td>
<td>1,591.73</td>
<td>998.89</td>
<td>-21.33</td>
<td>-25.28</td>
</tr>
<tr>
<td></td>
<td>2004 with BORR</td>
<td>1,252.20</td>
<td>746.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029 without BORR</td>
<td>1,553.03</td>
<td>979.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029 with BORR</td>
<td>1,203.47</td>
<td>741.67</td>
<td>-22.51</td>
<td>-24.29</td>
</tr>
<tr>
<td>9.15 Mw</td>
<td>2004 without BORR</td>
<td>4,654.27</td>
<td>3,722.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004 with BORR</td>
<td>4,254.17</td>
<td>2,121.17</td>
<td>-8.60</td>
<td>-43.02</td>
</tr>
<tr>
<td></td>
<td>2029 without BORR</td>
<td>4,592.60</td>
<td>3,561.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2029 with BORR</td>
<td>4,148.91</td>
<td>1,991.13</td>
<td>-9.66</td>
<td>-44.09</td>
</tr>
</tbody>
</table>
Table 6. Maximum velocities after the elevated road structures.

<table>
<thead>
<tr>
<th>Transect</th>
<th>Max. velocities for 8.5 Mw (m/s)</th>
<th>Max. velocities for 9.15 Mw (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without BORR</td>
<td>With BORR</td>
</tr>
<tr>
<td>A</td>
<td>4.52</td>
<td>3.80</td>
</tr>
<tr>
<td>B</td>
<td>3.20</td>
<td>1.30</td>
</tr>
<tr>
<td>C</td>
<td>0.45</td>
<td>0.41</td>
</tr>
</tbody>
</table>