Interactive comment on “Brief Communication: Meteorological and climatological conditions associated with the 9 January 2018 post-fire debris flows in Montecito and Carpinteria California, USA” by Nina S. Oakley et al.

Anonymous Referee #1

Received and published: 3 July 2018

This manuscript describes the meteorological conditions and climatological reference points (e.g., return period estimates) of the heavy rainfall that drove catastrophic debris flows following the 2017-2018 southern California wildfires. This is admittedly my first review of a "Brief Communication" submission, and in all honesty as I read it, I struggled to find novel aspects that were obviously worthy of publication. The event itself is interesting and high-impact, the data summary and meteorological analysis is sound, and the writing and communication is clear. Thus, the main issues that I have are more to do with what seems to be lacking, rather than problems with the material in the
manuscript. However, suspecting that the problem may be with my own expectations of a full-length publication relative to the present manuscript type, I offer below only a few minor comments/suggestions that the editor and authors can consider as they deem appropriate.

General comment: 1. If part of the purpose of this manuscript is to “support investigations on this and other PFDFs in a range of fields...,” then I suggest adding at least some discussion of/references to relevant post-fire hydrologic or geologic concepts that might be of interest in future research, e.g., a. Neary et al. 2003: https://www.researchgate.net/publication/228510172_Post-wildfire_watershed_flood_responses b. ‘Havel et al. 2018: https://doi.org/10.5194/hess-22-2527-2018 c. Brogan et al. 2017 https://onlinelibrary.wiley.com/doi/full/10.1002/esp.4194

Specific comments: Lines 25 – 26: I’m not familiar with the language/terminology “having high debris flow hazard”...do you mean risk? Can you re-phrase/explain for a general audience?

Figs. 3a, b are highly suggestive of possible line echo wave pattern (“LEWP”) dynamics. Again, in the interest of supporting/inspiring future investigations, perhaps a reference to this idea/possibility be added.