New Approaches to Seismic Microzonation Modelling of Ground Shaking Using Direct Characteristics of Influencing Criteria: Case Study of Bam City, Iran

Reza Hassanzadeh, Mehdi Honarmand, Mahdieh Hossienjani Zadeh, Farzin Naseri

Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631133131, Iran.

1. r.hassanzdeh@kgut.ac.ir, 2. mehonarmand167@yahoo.com, 3. mh.hosseinjani@gmail.com, 4. fnnaseri@yahoo.com

Correspondence to: Reza Hassanzadeh (r.hassanzdeh@kgut.ac.ir).

Abstract

This paper proposes a new model in evaluating seismic microzonation of ground shaking by considering direct characteristics of influencing criteria and dealing with uncertainty of modelling through production of fuzzy membership functions for each criterion. The relevant criteria were explored by reviewing previous literature and interviewing 10 specialized experts. Analytic Hierarchy Process (AHP) and Fuzzy Logic (FL) methods were applied in order to define priority rank of each criteria and to fuzzify sub-criteria of each criterion by interviewing 10 experts, respectively. Applying Fuzzy Logic method to deal with uncertainties of sub criteria of each criterion and using direct characteristics of each criterion are the new approaches in designing a new model. The criteria and sub-criteria were combined in GIS to develop a model for assessing microzonation of ground shaking in the study area of Bam city, Iran. The model’s output shows high to very high ground shaking levels were happened in central, east, and northeast to north part of the area. The validation results based on overall accuracy and Kappa statistics showed 80% to 82% accuracy, 0.74 and 0.75 Kappa indicating a good fit to the model’s output. This model assists planners and decision makers to produce seismic microzonation of ground shaking to be incorporated in designing new development plans of urban and rural areas, and to facilitate making informed decision regarding safety measures of existing buildings and infrastructures.

Keywords: Seismic Microzonation, Site Effects, Ground Shaking, Spatial Modelling, Analytic Hierarchy Process, Fuzzy Logic and GIS.
1. Introduction

This paper explores direct characteristics of influencing criteria and dealing with uncertainty of modelling through production of fuzzy membership functions for each criterion for the assessment of ground shaking amplification in a study area. MERM microzonation manual (2003) sets different factors effecting on the amplitude and duration of ground shaking at a specific site. These include “the magnitude of the earthquake, focal point and depth of the earthquake, directivity of the energy release, distance of rupture from the site, geological condition from the site to the location of the earthquake, and local geology and topographical condition of the site” (SM Working Group, 2015; Boore, 2003; Hassanzadeh et al., 2013). It has long been known that local conditions of foundation soils have a significant impact on the effects of an earthquake, as it was demonstrated in previous earthquakes such as Mexico City, 1985 (Beck and Hall, 1986), Kobe, 1995 (Wald, 1996), Izmit, 1999 (Tang, 2000) and Umbria-Marche earthquake, 1997 (Moro et al., 2007). It was witnessed in the Bam earthquake, 2003 that buildings located on unconsolidated sediments had greater destruction levels (Ramazi and Jigheh, 2006). The aim of seismic microzonation studies is to prepare ground-shaking map that can communicate efficient data to planners and policy makers in a geographic area for making informed decision regarding development policies in urban areas. Therefore, this community require accurate and certain information for developing mitigation plans and strategies. In the spite of this, there are uncertainties in estimating seismic microzonation of ground shaking at a site, as this can be influenced by complex factors such as the estimates of earthquake source, wave propagation, and site condition. Uncertainty in these criteria results in uncertain ground-motion estimate from earthquakes (Wang et al., 2017; Wang et al., 2016; Petersen et al., 2016).

Probabilistic Seismic Hazard Analysis (PSHA) (Cornell, 1968) has been used to assess ground-motion hazards from earthquakes (Atkinson et al., 2015; Petersen et al., 2016). This method dependent on “the length of the causative faults and depth of the earthquake”, which are generally unknown that cause uncertainty in assessing ground-motion of earthquakes (Wang et al., 2017). In deterministic seismic hazard analysis (DSHA) (Campbell, 2003; Atkinson and Boore, 2006) absent of relevant ground-motion attenuation relationship for specific geographic areas can cause uncertainty in applying DSHA for assessing ground motions of an earthquake (Wang et al., 2017). Scenario-based seismic hazard analysis (SSHA) (Panza et al., 2012) applies ground-motion simulations of a scenario earthquake using specified source, path and site parameters. By
conducting many simulations, earthquake variability of different sources, ground-motion propagation characteristics, and local site effects can be considered. Therefore, uncertainties using SSHA are quantified explicitly (Wang et al., 2017). Accurate measurement and communication of uncertainties are critical in ground-motion hazard assessment for earthquakes. Thus, other approach in microzonation studies is the use of multi-criteria decision-making methods (MCDM). According to these methods after identifying potential criteria, experts evaluate and choose among qualitative and quantitative criteria. Since, experts’ judgments can be subjective and imprecise; uncertainty also exists in the analysis. Uncertainty stems mainly from sources such as the lack of the incomplete data availability, vagueness, and linguistic expert view. Such uncertainties and vagueness can be dealt with fuzzy logic principles (Zadeh, 1965) and inference systems (Klir, 2004;Zadeh, 1975). Based on fuzzy logic method, the content of each sentence implies logical rules, which constitute the foundation of fuzzy system modeling and inference procedures. In comprehensive decisions, an expert’s heuristic knowledge or empirical information is used frequently for better conclusions. For these reasons, Fuzzy Logic is used for evaluating of seismic microzonation of ground shaking amplification.

There are many MCDM tools in the literature but Analytical Hierarchal Process (AHP) (Saaty, 1980) is one of the most useful techniques, and plays an important role in calculating criteria’s weights and selecting optimized alternatives. Sitharam and Anbazhagan (2008) applied AHP and GIS for seismic microzonation studies in Bangalore, India. Furthermore, AHP and GIS was applied to produce seismic microzonation map of Dehli (Mohanty et al., 2007), Haldia, Bengal Basin (India) (Mohanty and Walling, 2008), Erbaa (Turkey) (Akin et al., 2013) and Al-Madinah (Moustafa et al., 2016). Fuzzy Logic method was used for evaluation of earthquake damage to buildings (Sen, 2010), and quick seismic microzonation (Teramo et al., 2005;Nath and Thingbaijam, 2009;Boostan et al., 2015). Although there were a number of publications evaluating the seismic microzonation of ground shaking amplification in the literature, but there is lack of evidence in using the Fuzzy Logic method for producing seismic microzonation of ground shaking amplification. Moreover, few researchers have considered direct characteristics of each criteria in local ground shaking analysis. Additionally, in order to remove uncertainties regarding source of probable earthquake, magnitude and rapture length, therefore these criteria was not considered for producing seismic microzonation of ground shaking in this study.
The main purpose of this paper is to develop a model for evaluation of seismic microzonation of ground shaking amplification using AHP, Fuzzy Logic and Weighted Linear Combination (WLC) methods in GIS. At this stage, model inputs are direct characteristics of local geology, hydrology, sedimentology, and topographical factors that should be taken into consideration. First all selected criteria were weighted using AHP method by interviewing 10 experts, then all criteria are converted into fuzzy sets and fuzzy membership functions (MFs) were produced, then WLC and fuzzy inference rules are used to develop a model for producing seismic microzonation of ground shaking amplification for a study area.

2. Material and methods

This study investigates the importance of influencing factors on seismic microzonation of ground shaking. These criteria are identified by reviewing previous literature. Analytic Hierarchy Process (AHP) and Fuzzy Logic (FL) Methods are applied to deal with selection, weighting and fuzziness of criteria due to associated uncertainties in the decision-making process of seismic microzonation of ground shaking amplification by interviewing experts. Combining the criteria and sub criteria is done based on WLC method. Finally, the developed model is validated using Overall Accuracy (OA) and Kappa statistics methods. The study has been conducted in four steps that are elaborated in Figure 1.

Figure 1. The methodological approach of the model

2.1. Identification, Weighting and Fuzzification of Criteria

Seismic microzonation of ground shaking can be influenced by several criteria. These criteria need to be identified by reviewing literature and interviewing experts in data gathering step. Selected criteria will be weighted and fuzzified using AHP and FL methods as they are explained in the following:
2.2.1. Analytical methods

2.2.1. Analytic Hierarchy Process (AHP) method

Several methods have been developed to deal with ranking of criteria and solving a problem, such as Regime (Hinlopen et al., 1983), ELECTRE family (Figueira et al., 2005), Analytical Hierarchy Process (AHP) (Saaty, 1980), and Multiple Attribute Utility approach (MAUT) (Keeney and Raiffa, 1993). AHP is one of the most commonly used multi-criteria decision making (MCDM) tools, and allows the consideration of both objective and subjective factors in ranking alternatives in a hierarchical decision model (Saaty, 1980; Saaty, 1990). This method is applied to convert the experts’ view on the importance of each criterion and sub-criterion to a numerical value by comparing them to one another, one pair at a time (pair-wise comparison) (Saaty, 1980).

AHP matrix (A) is developed from the pair-wise comparison of the relative importance of criterion A_i to criterion A_j (a_ij, represents a quantified judgment on a pair of criteria C_i, C_j) (Figure 2), as it was explained above. The values assigned to a_ij according to the Saaty’s scale (1980) are usually in the interval of 1 to 9 or their reciprocals. In order to calculate the priority ranking of each criterion (weight), Saaty (1990) suggested the mathematical computation of eigenvector (Eq. 1 & 2).

\[
\lambda_{\text{max}} = \sum_{j=1}^{n} a_{ij} \frac{W_j}{W_i} \quad (\text{Eq. 1})
\]

Where: \(\lambda_{\text{max}} \) = the largest eigenvalue; \(a_{ij} \) = judgment; \(W_i \) & \(W_j \) = numerical weights for judgment \(a_{ij} \).

\[
(A - \lambda_{\text{max}} I)X = 0 \quad (\text{Eq. 2})
\]

Where: \(A \) = AHP matrix; \(\lambda_{\text{max}} \) = the largest eigenvalue; \(I \) = Unique matrix; \(X \) = eigenvector.
In addition, the assignment of weights (the degree of importance) to each criterion relates to the process of the experts’ logical and analytical thinking, which is tested for each matrix with Consistency Ratio (CR) statistics. In case, this statistics is less than 0.1 (CR < 0.1) the experts’ answers are logical. Following the testing for consistency, the weights are aggregated to determine ranking of decision alternatives (the weights) for each criteria. Therefore, in this research, AHP method is applied to calculate the degree of importance of each criterion influencing on seismic microzonation level of ground shaking in a region using interview data of 10 specialized experts in seismology, earthquake engineering, geology, tectonics and structural engineering.

2.2.2. Fuzzy Logic (FL) method

Fuzzy logic is a method of “approximating modes of reasoning” (Novák et al., 2012), and it is a mathematical tool that deals with uncertainty in a different way that can relate independent to dependent variables. Zadeh (1965) introduced Fuzzy set theory Indicating that the boundary is not precise and the gradual change is expressed by a membership function, and it changes from non-membership to membership in a fuzzy set (Eq. 3). The characteristic function can be assigned a value between 0 to 1. Each membership function is represented by a curve that indicates the assignment of a membership degree in a fuzzy set to each value of a variable. Curves of the membership functions can be linear, triangles, trapezoids, bell-shaped, or have more complicated shapes (Figure 3) depend on the purpose of the subject (Demicco and Klir, 2003).

\[A_a = \{ x \in X \mid \mu_A (x) \geq a \} \]

(Eq. 3)

Where \(A_a \) is called the a-cut or a-level set of A, and \(\mu_A (x) \) represents membership degree of the element x.

Figure 3. Fuzzy membership functions (After Mancini, 2012)
Fuzzy systems are mainly based on expert knowledge to formalize reasoning in natural language mostly using sets of fuzzy inference rules or “if–then” rules (Eq. 4).

\[\text{If } x \text{ is } A \text{ then } y \text{ is } B \quad \text{(Eq. 4)} \]

As membership functions curve can easily be changed by small increments based on expert knowledge, therefore, fuzzy logic can characterize and model geologic systems in an efficient way (Klir, 2004; Demicco and Klir, 2003). Therefore, in this research using Fuzzy set, the uncertainties in producing microzonation map of ground shaking can be managed by defining fuzzy membership functions for each criterion. This happens by assigning meaningful values (0 to 1) to each individual (sub criteria) of each criterion through interviewing 10 specialized experts. For the purpose of defuzzification, largest of maximum method was used that the precise value of the variable output is one of which the fuzzy subset has the maximum truth-value (Mancini et al., 2012).

2.3. Data gathering

In order to identify influencing criteria in seismic microzonation of ground shaking the required data were collected through a literature review, and semi-structured interviews with 10 experts who were involved in the geology, seismology, tectonic and structural engineering, and geomorphology fields. They were asked about the criteria that can influence seismic microzonation level of ground shaking, and then these data were analysed using AHP and FL methods as explained in the following:

2.3.1. Determining the relevant criteria by reviewing literature

The potential criteria influencing seismic microzonation of ground shaking were determined through reviewing previous research. By reviewing documents on earthquake engineering, seismology, geology, tectonic and structural engineering, geomorphology and seismic microzonation reports and guidelines (Fäh et al., 1997; Ding et al., 2004; Molina et al., 2010; Mundepi et al., 2010; Marulanda et al., 2012; Hassanzadeh et al., 2013; Federal Emergency Management Agency (FEMA), 2014; Fraume et al., 2014; Grelle et al., 2016; Grelle et al., 2014; SM...
Working Group, 2015; Rehman et al., 2016; Nwe and Tun, 2016; Global Earthquake Model (GEM), 2017; CAPRA, 2017; Michel et al., 2017; Trifunac, 2016; Hassanzadeh and Nedovic-Budic, 2016), in total 14 criteria were recognized that can influence seismic microzonation levels in a study area (Table 1).

Table 1. Relevant criteria that influence on seismic microzonation

2.3.2. Experts’ Knowledge data

a) Interviewing disaster managers (semi-structured interviews) to determine the important criteria

The most important criteria were determined by conducting a semi-structured interview with 10 experts using the snowball sampling or chain-referral sampling method (Biernacki and Waldorf, 1981). In this study, all 10 interviewees were highly experienced and had been involved in seismic microzonation studies. The average age of the sampled individuals was 43 years, and all of them had a postgraduate degree.

A list of criteria that were identified by reviewing previous studies were given to the experts and they were requested to add other criteria if they thought they were applicable. They were asked to rank each criterion using a five-point Likert Scale (Likert, 1932), so respondents could choose the option that best reflected their opinion on each criterion. When surveying many people on the same criterion, the five codes could be summed up, averaged or calculate the mode, indicating overall positive or negative orientation towards that criterion. This was the basis from which this method was used to identify the degree of importance for each criterion in seismic microzonation of ground shaking in a region. Therefore, in order to elicit the most relevant criteria, the significance of specific factors were measured on a five-point Likert Scale where 1 represents ‘not important at all’, 3 ‘of little importance’, 5 ‘of average Importance’, 7 ‘very important’, and 9 ‘extremely important’ (Likert, 1932; Jamieson, 2004). The collected data from experts were analysed and criteria with mean ratings above ‘5’ (‘of average important’) were selected (Table 2). These are considered for further analysis using the Analytic Hierarchy Process (AHP) method.
Table 2. The average importance criteria based on 5-point Likert Scale

b) Interviewing disaster managers (structured interviews) in order to collect data for computing the relative importance (weights) of the criteria

A questionnaire based on AHP matrix (A) was developed for a pair-wise comparison of the relative importance of the criteria for calculating the weights (priority ranking) of each criterion. As AHP is a subjective method therefore a large sample size is not needed (Cheng and Li, 2002; Lam and Zhao, 1998). Therefore, data were collected by interviewing 10 experts (the same experts who were interviewed in the first round) based on the structured questionnaire (closed-ended questions). They were asked to compare the relative importance of each criterion against all others, based on Saaty’s scale by verbal preferences (Saaty, 1980). A pair-wise comparison that was carried out with an expert is shown in Table 3. These data are used by the AHP method to compute the weight of each criterion as explain previously.

Table 3. The results of pair-wise comparisons of the selected criteria with each other based on the AHP matrix

c) *Determining fuzzy set and fuzzification of thresholds of sub-criteria for each criterion*

In the next step, since each criterion and its sub-criteria has different effect on the seismic microzonation of ground shaking level in a region, fuzzy membership functions (MFs) for sub-criteria of each criterion are defined in that numerical analyses of their effect would be computed. As, designed parameters of each membership function depends on experts knowledge, then number of memberships, the shape, the positioning, and the overlay area of memberships of each MFs for each criterion would be different. To conduct this analysis, 10 experts were interviewed regarding membership degree of sub-criteria of each criterion, and mode of each sub-criteria was calculated and MFs for each criterion was depicted as descried in the following:

- Thickness of soil and sediments: an effective factor in site effect assessment is the thickness of sediments. Rezaei et al. (2009) (2009) state that the soil thickness shows a direct relationship to
damage rate observations in the Bam earthquake. This layer was produced by 245 geophysical, geotechnical, and sedimentological sample sites across the city. The alluvial thickness varies in different parts of the city. In the northern part of the city, the sediment thickness ranges from 0 m, where bedrock is exposed beneath Arg-e-Bam, to 90 m across most of the northern half of the study area. Toward the south and center of the study area, sediment thickness increases over a short distance, to more than 270 m. This defines a subsurface of high sediment thickness that extends across the entire study area from west to east and underlies south-central Bam. Therefore, based on a direct relationship between the damage rate and alluvial thickness (Rezaei et al., 2009; Marie Nolte, 2010). MF for this criterion is depicted in figure 4a.

- Consolidation and strength of soil and sediments: It has been frequently observed that earthquake damage is greater in settlements located on unconsolidated and soft soils than in those sited on stiff soils or hard rock. For example, in Bam earthquake strong amplification occurred due to the extremely soft clay layers that caused high-rise buildings to collapse (Jafari et al., 2005). Another example was the Loma Prieta earthquake that happened in 1989, where much of the damage occurred in the central San Francisco Bay area at sites underlain by thick deposits of soft clay soils (Stewart, 1997). The soil classification has been done based on different thresholds for the average shear wave velocity (Vs) to a depth of 30m by the National Earthquake Hazard Reduction Program (NEHRP) to characterize sites for purposes of estimation amplification of seismic motions. This standard has applied in Unified Building Code (Dobry et al., 2000) and Eurocode8 (Sabetta and Bommer, 2002; Kanli et al., 2006). Based on this classification in areas on unconsolidated sediments, shear wave velocity reduces, and expected amplification during earthquakes can be increased. Therefore, according to this MFs for each class have been calculated as shown in figure 4b.

- Type of soil and particle size distribution of sediments: It has long been recognized that the destructiveness of ground shaking during earthquakes can be significantly worsened by the type of local soil and subsurface sediment conditions. In past events, the observed variability in seismic intensity and structural damage severity has often been attributed to the variability of soil and subsurface sediment stratigraphy in a given area. Among the geotechnical properties of soil and sediments, grain size is one of the most important criteria (Assimaki et al., 2006; Phoon et al., 2006;
In the study area, Rezaei et al. (2009) identified eight sediment types: clay, silt, sand, granules, pebbles, cobbles, and boulders. They stated that the grain size in the shallow subsurface (<10 m) decreases across the city from south to north and increases with depth. Their investigation showed that fine-grained soils and sediments (clay, clayey sand, cohesive sandy mud, and cohesive muddy sand) dominated the northern part of the city at shallow depths. In the central part of the city, fine-grained sediments changed laterally to coarse-grained sediments (poorly sorted sand, well-rounded gravel, poorly sorted gravel, and muddy or sandy gravel) which dominated in the south part of the city. As a rule, it can be assumed that, the smaller the grain size of sediments, the less the shear waves velocity and therefore the greater the effect of the seismic wave on the destruction level of buildings (Rezaei et al., 2009; Assimaki et al., 2006; Phoon et al., 2006). Therefore, the MFs for each specific grain size are calculated in Figure 4c.

- Depth of groundwater: Research on the effects of groundwater shows it can magnify an earthquake’s damage. The most well known effect is liquefaction. The geologic and hydrologic factors that affect liquefaction susceptibility are the age and the type of sedimentary deposits, the looseness of cohesions less sediments and the depth to the groundwater table (Tinsley et al., 1985). The liquefaction is mostly limited to water-saturated, cohesions less sediments, and granular sediments at depths less than 15m (Iguchi and Tainosho, 1998; Sitharam, 2010). Noack and Fah (2001) categorized it by the depth of the water table, which is split into three classes where the weight of the class increases while the groundwater table decreases (Fah et al., 1997). Therefore, due to the geological conditions in Bam, liquefaction is considered of minor importance because Talebian et al. (2004) and Rezaei et al. (2009) found water saturated sands in very few places, however, measured microtremore data demonstrated more amplification in areas with high groundwater levels. Accordingly, MFs for each class of groundwater depth are computed as shown in figure 4d.

- Type of surficial rock: Type of surficial rocks can effect on seismic microzonation level of ground shaking in each region. Three main types of rock based on their formation process include igneous, metamorphic, and sedimentary rocks. Each type has its own sub-categories and what matter in this research is how hard or soft and how dense the specific type of rock is in compare with the other types. Geological Strength Index (Geological Survey of Iran (GSI)) of “rock masses depends on
rock’s material, the amount of joints and their relations, alteration, and presence of water” (Hoek and Brown, 1997). There are many rock types in the nature that GSI can be calculated for any of them based on their condition, and then can be fuzzified addressing their effect on seismic microzonation level of ground shaking. There are five classes of GSI including very good, good, fair, poor and very poor based on their surface quality and interlocking of rock pieces from massive, blocky, very blocky, disintegrated, and laminated/ sheered (Marinos et al., 2007). The GSI values categorized in five classes including very low, low, medium, high and very high levels. These classes shows the geological strength of rocks that the high and very high GSI demonstrate high to very high strength of rocks. Therefore, previous studies demonstrates that in massive rocks, high GSI values, seismic waves passes quickly and therefore have small influence in seismic microzonation level of ground shaking, and vice versa if GSI value gets to the lower values. Thus, in fuzzyification process of surficial rocks, the rock with very high GIS assign 0 and the rocks with very low GSI assign 1 (Figure 4e). Furthermore, the criterion of type of bedrock acts the same as surficial rock type criterion as explained above. Type of bedrock rarely changed over a small extent with homogenous lithology. However, it was concern of experts in determining seismic microzonation of ground shaking.

- **Slope surface**: Bisch et al. (2012) reported that the effects of slope angle on topographic amplification factor. They classified the slope angle to three categories: 0-15 with no effect, 15-30 degree with 1.2 and more than 30 degree with 1.4 amplification coefficients. Bouckovalas and Papadimitriou (2005) investigated that the influence of slope in amplifying the peak horizontal seismic ground acceleration in front and behind the crest. Grelle et al. (2016) presented formulae for topographic amplification on slope surface. These studies indicated that with the increase in slope angle the amplification factor would be increased. This can be a basis for depicting MFs of this criterion (Figure 4f).

- Topography irregularities: Seismic amplification has been witnessed in several earthquakes due to topographical changes (Geli et al., 1988; Paolucci, 2002). Bisch et al. (2012) classified the site in two classes of “isolated cliff and ridge with crest width significantly less than base width” (CEN European Committee for Standardisation, 1994, p 93). However, this seems simplistic, as it does not consider the elevation differences. Furthermore, Grelle et al. (2016) presented an equation that considered the local slope height, relief height, regional share wave velocity and relief ratio. In
addition, several calibration constants should be calculated using 2D numerical analysis for each study area to compute topographic effects on seismic microzonation of ground shaking. Lee et al. (2009) found out that the amplification on top of elevated surfaces with small extent was much higher than valleys and flat areas. Therefore, the elevation differences (dH m) between the bases of a hill with the top of the hill and also the area (A m²) of the top part of the hill are the main driver in computing the amount of amplification of seismic waves and can effect on seismic microzonation level of ground shaking. Therefore, the higher the elevation differences and the smaller the area of the elevated surface, the ground in this part will be more amplified. Here, using fuzzy logic and experts’ knowledge the effect of topography in terms of elevation differences in determining seismic microzonation of ground shaking in the study area is defined (Figure 4g).

Figure 4. Membership functions (MFs) based on fuzzy logic system: Thickness of soil and sediments (a), Consolidation and strength of soil and sediments (b), Type of soil and particle size distribution of sediments (c), Depth of groundwater (d), Type of surficial rock and bedrock (e), Slope surface (degree) (f), Topography irregularities (g).

2.3.3. Preparing thematic data

The required data were collected from relevant organizations and documents and they were converted to GIS files. These thematic data included: thickness of soil and sediments (Figure 5a), consolidation and strength of soil and sediments (Figure 5b), type of soil and particle size distribution of soil and sediments (Figure 5c and d), depth of groundwater (Figure 5e), type of surficial rock (Figure 5f), topography of surface (Figure 5g), and slop surface (Figure 5h) layers.

Figure 5. Thematic Layers of Bam city: Thickness of soil and sediments (m) (a), Consolidation and strength of soil and sediments, (b), Sediment type at depth of 1 meter (c) and at depth of 9 meters (d), Groundwater level (e), Type of surficial rock(f), Topography (g) and Slop (h) layers.

2.3.4. Preparing control data

National Cartographic Center (2003) and Hisada et al. (2005) were collected data on the destruction level of buildings after math of the Bam earthquake (Figure 6a and b). Lashkari Pour et al. (2006)
and Askari et al. (2004) were collected data on the dominant frequency of soil (Figure 6c and d) using microtremor measurements in Bam city. These datasets were used to validate the model.

Figure 6. Control data: Actual building destruction level (Hisada et al., 2005) (a), percentage of damage to buildings caused by the Bam earthquake in 2003 (National Cartographic Center (NCC), 2003) (b), Dominant frequency by (LashkariPour et al., 2006) (c) and by (Askari et al., 2004) (d) using Microtremor field measurement.

2.3. Spatial combination methods and overlay rules

The spatial Multi Criteria Decision Making (MCDM) approach is a decision-aid and a mathematical tool that combines and transforms spatially referenced data into a raster layer with a priority score. (Roy, 1996; Malczewski, 2006). Several combination methods have been developed, such as Boolean operations (Malczewski, 1999), weighted linear combination (WLC: combining the normalized criteria based on overlay analysis) (Voogd, 1983; Drobne and Lisec, 2009; O’Sullivan and Unwin, 2010) (Eq. 5), ordered weighted averaging (OWA) (Yager, 1988; Rinner and Malczewski, 2002), and Analytical Hierarchy Process (AHP) based on the additive weighting methods (Zhu and Dale, 2001). In this research, the AHP method (Saaty, 1980) was used to derive the weights associated with criteria and Fuzzy Logic method was applied to compute sub-criteria’s membership functions (MFs) in order to produce the seismic microzonation of ground shaking. Then, the degree of membership of each sub-criteria (calculated by Fuzzy Logic method) is assigned to the corresponding sub-criteria. Next, this is multiplied by the weight of corresponding criteria (calculated by AHP method). Finally, they are summed up in a linear manner using WLC method (Eq. 5) to develop the model (Larzesh model) for production of the seismic microzonation of ground shaking in the study area.

\[A_i = \sum W_j \times X_{ij} \]
(Eq. 5)

Where: \(w_j \) = the calculated weight of criteria \(j \), and \(X_{ij} \) = the degree of membership of the \(i \)th sub-criteria with respect to the \(j \)th criteria, and \(A_i \) = the seismic microzonation of ground shaking index in \(i \)th location.

2.4. Validation and comparison methods
In order to validate the model, as categorical variables are the main driver of model development in this research, therefore relevant measures such as Overall Accuracy and Kappa statistic will be applied to measure the performance of the model.

\textit{a) Overall accuracy (OA)}

Accuracy assessments determine the quality of the results derived from data analysis or a model, in comparison with a reference or ground truth data (where ground truth data are assumed to be 100\% correct) (Congalton and Green, 2009). The accuracy assessment can be obtained by creating a contingency table of counts of observations, with calculated, estimated or predicted data values as rows and with reference data values as columns. The values in the shaded cells along the diagonal represent counts for correctly classified observations, where the reference data matches the predicted value. This contingency table is often referred to as a confusion matrix, misclassification matrix, or error matrix (Czaplewski, 1992; Congalton and Green, 2009) (Eq. 6).

\[
OA = \frac{\sum_{k=1}^{q} n_{kk}}{n} \times 100 \quad \text{(Eq. 6)}
\]

Where: \(OA = \) Overall Accuracy, \(n_{kk} = \) Values in diagonal cell of the matrix (correctly classified observations), and \(n = \) number of observations.

\textit{b) Kappa analysis}

The kappa statistic (\(k\)) (Sim and Wright, 2005; Congalton and Green, 2008) calculates degree of agreement between classes of two independent observer measuring the same property. The degree of Kappa would be 0 for a random classifies and 1 for classification. Degree of agreement of Kappa interprets as follows: less than 0.4: poor agreement, 0.4 and 0.8: moderate agreement, and greater than 0.80: strong agreement (Congalton and Green, 2008) (Eq. 7).

\[
k = \frac{P_o - P_e}{1 - P_e} \quad \text{(Eq. 7)}
\]

Where: \(P_o = \) the relative observed agreement among raters, \(P_e = \) the hypothetical probability of chance agreement.
Results and discussion

In order to produce the seismic microzonation of ground shaking, the most important criteria were identified and then were weighted using AHP pair-wise comparison method. The higher weight belong to thickness of soil and sediments (0.271), consolidation and strength of soil and sediments (0.207), type of soil and particle size distribution of sediments (0.177), depth of groundwater (0.171), topography of surface (0.054), type of surficial rock (0.041), slope surface (0.040), and type of bedrock (0.040) were considered. Then, based on Fuzzy Logic method sub-criteria of each criterion was fuzzified and membership functions for them was defined. Next, these criteria were combined based on the Weighted Linear Combination (WLC) (Drobne and Lisec, 2009) in GIS to develop the model for producing the seismic microzonation of ground shaking map of the study area, as it is proposed in the following (Eq. 8):

\[A_j = \sum (w_{S_e} \cdot F_{SS}) + (w_{T_A} \cdot F_{TA}) + (w_{S_A} \cdot F_{SA}) + (w_{D_{GW}} \cdot F_{D_{GW}}) + (w_{T_R} \cdot F_{TR}) \\
+ (w_{T_{BR}} \cdot F_{T_{BR}}) + (w_{T_S} \cdot F_{TS}) + (w_{S_L} \cdot F_{SL}) \]

(Eq. 8)

Where: \(A_j \) = seismic microzonation of ground shaking, weights of each criterion: \(w_{S_e} \) = consolidation and strength of soil and sediments, \(w_{T_A} \) = thickness of soil and sediments, \(w_{S_A} \) = Type of soil and particle size distribution of sediments, \(w_{D_{GW}} \) = depth of groundwater, \(w_{T_R} \) = type of surficial rock, \(w_{T_{BR}} \) = type of bedrock, \(w_{T_S} \) = topography of surface, \(w_{S_L} \) = slope surface, and fuzzified sub-criteria of each criterion: \(F_{SS} \) = consolidation and strength of soil and sediments, \(F_{TA} \) = thickness of soil and sediments, \(F_{SA} \) = Type of soil and particle size distribution of soil and sediments, \(F_{D_{GW}} \) = depth of groundwater, \(F_{TR} \) = type of surficial rock, \(F_{T_{BR}} \) = type of bedrock, \(F_{TS} \) = topography of surface, \(F_{SL} \) = slope surface.

Figure 7 displays the resulting microzonation map of ground shaking in Bam city. The areas with high to very high susceptibility of amplification are located in the north, east and northeast part of Bam city. This is due to the widespread unconsolidated sediments, low groundwater level in combination with high sediment thickness.

In order to validate the results, OA and Kappa methods were applied comparing the output of model with the measured predominant frequency (Askari et al., 2004; LashkariPour et al., 2006) in the study area. The results demonstrated 80% and 82% (Table 4a and b) for OA and 0.74 and
0.75 for Kappa (Table 5) indicating a good fit of the model’s output with the measured data. Moreover, overlaying the building destructions caused by the Bam earthquake in 2003 (Hisada et al., 2005; National Cartographic Center (NCC), 2003) shows high destruction levels happened in locations with high ground shaking which were located in central, north and northeast part of the city.

Figure 7. Seismic microzonation of ground shaking map of Bam city

Table 4. Comparison between the model’s output with the measured predominant frequency in Bam city by Askari et al. (2004) (a) and LashkariPour et al. (2006) (b).

Table 5. Kappa coefficient and OA

In this study, we have focused on the site effect and local geology properties of a site that have a massive influence on seismic microzonation of ground shaking in the study area. To deal with related uncertainties in preparing seismic microzonation, the most important criteria were selected, weighted and the fuzzified. Criteria with high uncertainty degree such as distance of active fault to the site, depth and magnitude of the probable earthquake were not considered because there was no possibility to exactly find out where and how an earthquake will be triggered. Therefore, only the criteria with known location (x and y) and known characteristics were taken into consideration. Furthermore, to deal with uncertainties Fuzzy Logic is a suitable approach as we can define membership function of the effect of each criterion in the amplification of ground shaking by interviewing 10 experts and obtaining expert’s knowledge. This can result in realistic output regarding the behavior of each criterion in ground shaking calculation. The newly developed model uses AHP and Fuzzy Logic (Zadeh, 1965) to deal with complexities and uncertainties in data analyses in weighting the criteria and fuzzifying the sub-criteria of each criterion. Although, in studies for evaluating seismic microzonation in Bangalore (India) (Sitharam and Anbazhagan, 2008), Dehli (Mohanty et al., 2007), Haldia (India) (Mohanty et al., 2007), Erbaa (Turkey) (Akin et al., 2013) and Al-Madinah (Moustafa et al., 2016) only AHP method was applied to weight the criteria, and none of these studies considered weighting of sub criteria for each criterion even using other methods.
Few researchers have considered direct properties of influencing factors in assessing ground shaking amplification. Even, in evaluating seismic response developed models such as SiSeRHMap v1.0 (Grelle et al., 2016) and GIS Cubic Model (Grelle et al., 2014), the researchers have applied only lithodynamic, stratigraphic and topographic effects as influencing factors. The current research considers direct properties of each criteria and tries to manage uncertainties in criteria and sub-criteria of each criterion via weighting and fuzzification process using experts’ knowledge and the use of direct properties of criteria. These processes can be extended in more details, which are subject to more investigation in the future.

Conclusions

Larzesh model introduces a new method based on AHP and Fuzzy Logic rules that enables experts to produce seismic microzonation of ground shaking using direct properties of lithological, sedimentological, geological, hydrological and topographical effects in a study area using experts’ knowledge in weighting and fuzzifying criteria and sub criteria that can be readily perceived and consulted. The application of the model was carried out in the urban area of the Bam city in Iran. The results demonstrated high to very high ground shaking amplifications were located in central, east, and northeast to north part of the city that was confirmed comparing with measured microtremor data on predominate frequency in the study area. However, as the proposed model is a spatial computational tool, the validation of output in producing seismic microzonation of ground shaking strictly dependent on the quality and preparation of input data. In conclusion, the model enable disaster managers, planners, and policy makers in producing seismic microzonation of ground shaking and making informed decision in urban planning and designing appropriate plans for urban development, especially in areas with high seismic activities.

Acknowledgements

The authors would like to express their appreciation to Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran for financial support of this study under reference number of 7/C/95/2053.

Geological Survey of Iran (GSI): Geological Map of Iran, 1:100,000 Series, Sheet 7648, Bam, Iran, 1993.

Sitharam, T. G.: Technical Document on Geotechnical and Geophysical Investigation for Seismic Microzonation Studies of Urban Centers in India, National Disaster Management Authority (NDMA), Bhawan, Safdarjung Enclave, New Delhi, 123, 2010.

SM Working Group: Guidelines for Seismic Microzonation, Civil Protection Department and Conference of Regions and Autonomous Provinces of Italy, 2015,

Wang, Z., Carpenter, N. S., and Zhang, L.: Assessing Potential Seismic Hazards from Induced Earthquakes in the Central and Eastern United States, AAPG Eastern Section Meeting, 2016,

Table 1. Relevant criteria that influence on seismic microzonation

<table>
<thead>
<tr>
<th></th>
<th>Criteria</th>
<th>Average Degree of Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thickness of soil and sediments</td>
<td>8.5</td>
</tr>
<tr>
<td>2</td>
<td>Consolidation and strength of soil and sediments</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Type of soil and particle size distribution of sediments</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>Depth of groundwater</td>
<td>7.25</td>
</tr>
<tr>
<td>5</td>
<td>Topography of surface</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Type of surficial rock</td>
<td>5.25</td>
</tr>
<tr>
<td>7</td>
<td>Slope surface</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Type of bedrock</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>Thickness of bedrock</td>
<td>4.5</td>
</tr>
<tr>
<td>10</td>
<td>Morphology of bedrock</td>
<td>4.5</td>
</tr>
<tr>
<td>11</td>
<td>Topography of bedrock</td>
<td>4.5</td>
</tr>
<tr>
<td>12</td>
<td>Age of alluvial and sediments</td>
<td>3.75</td>
</tr>
<tr>
<td>13</td>
<td>Age of bedrock</td>
<td>3.25</td>
</tr>
<tr>
<td>14</td>
<td>Age of surficial rock</td>
<td>2.75</td>
</tr>
</tbody>
</table>
Table 3. The results of pair-wise comparisons of the selected criteria with each other based on the AHP matrix

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Thickness of soil and sediments</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>4</td>
<td>0.271</td>
</tr>
<tr>
<td>2-Consolidation and strength of soil and sediments</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
<td>0.207</td>
</tr>
<tr>
<td>3-Type of soil, and particle size distribution of sediments</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td>0.177</td>
</tr>
<tr>
<td>4-Depth of groundwater</td>
<td>1</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>0.171</td>
</tr>
<tr>
<td>5-Type of surficial rock</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.041</td>
</tr>
<tr>
<td>6-Topography of surface</td>
<td>1</td>
<td>1/2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.054</td>
</tr>
<tr>
<td>7-Slop surface</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.040</td>
</tr>
<tr>
<td>8-Type of bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Lambda = 8.60 CI = 0.05

Table 4. Comparison between the model’s output with the measured predominant frequency in Bam city by Askari et al. (2004) (a) and LashkariPour et al. (2006) (b).

a)

<table>
<thead>
<tr>
<th>Predicated</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>23</td>
</tr>
</tbody>
</table>

Av_Ac = 82 %

b)

<table>
<thead>
<tr>
<th>Predicated</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{Av}_A \text{c} = 80 \% \]

<table>
<thead>
<tr>
<th>Comparison of the model’s output and measured data</th>
<th>Predominant frequency (Askari et al., 2004)</th>
<th>Predominant frequency (LashkariPour et al., 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kappa coefficient</td>
<td>0.74 (0.000)</td>
<td>0.75 (0.000)</td>
</tr>
<tr>
<td>OA</td>
<td>82%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Table 5. Kappa coefficient and OA
Figures

1. Identification, Weighing and Fuzzification of Criteria

- Reviewing previous literature to detect relevant criteria for seismic microzonation of ground shaking amplification
- Interviewing experts to identify the most important criteria
- Interviewing experts to calculate weights of selected criteria using AHP method
- Interviewing experts to fuzzify the sub-criteria of each criterion using Fuzzy Membership Functions

2. Combining criteria and sub criteria using Weighted Linear Combination (WLC) method to produce seismic microzonation map for the study area.

3. Proposing a spatial model (Larzesh Model) for computing amplification of ground shaking in the case study area

4. Validating the model using predominant frequency of measured Microtremor data and actual building destruction levels caused by the Iran earthquake in 2003.

Figure 1. The methodological approach of the model

\[A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \]

Where: \(a_{ij} = 1, if \ i = j \), and \(a_{ij} = \frac{1}{a_{ij}}, if \ i \neq j \) and \(j = 1, n \).

Figure 2. AHP matrix (A)

Figure 3. Fuzzy membership functions (After Mancini, 2012)
a) Thickness (m) vs. Degree of Membership

b) Hard rock, Soft rock, Stiff soil, Soft soil vs. Degree of Membership

b) Degree of Membership vs. Consolidation and strength of soil and sediments

c) Sediment type vs. Degree of Membership

d) Depth of groundwater (m) vs. Degree of Membership

e) Geological Strength Index (GSI) vs. Degree of Membership

f) Slope angle (degree) vs. Degree of Membership
Figure 4. Membership functions (MFs) based on fuzzy logic system: Thickness of soil and sediments (a), Consolidation and strength of soil and sediments (b), Type of soil and particle size distribution of sediments (c), Depth of groundwater (d), Type of surficial rock and bedrock (e), Slope surface (degree) (f), Topography irregularities (g).
Figure 5. Thematic Layers of Bam city: Thickness of soil and sediments (m) (a), Consolidation and strength of soil and sediments, (b), Sediment type at depth of 1 meter (c) and at depth of 9 meters (d), Groundwater level (e), Type of surficial rock(f), Topography (g) and Slop (h) layers.
Figure 6. Control data: Actual building destruction level (Hisada et al., 2005) (a), percentage of damage to buildings caused by the Bam earthquake in 2003 (National Cartographic Center (NCC), 2003) (b), Dominant frequency by (LashkariPour et al., 2006) (c) and by (Askari et al., 2004) (d) using Microtremor field measurement.

Figure 7. Seismic microzonation of ground shaking map of Bam city.