Dear editor, we are pleasant to present the revised version of the paper “Hydrological control of large hurricane-induced lahars: evidences from rainfall-runoff modelling, seismic and video monitoring.” by Capra et al. We consider that the revised version benefits from the constructive revisions of three reviewer and one comment. We followed all the suggestions made. Here below you will find the responses to all the points raised in the revisions, and main changes consisted in:

- The English was revised based on the reviewer suggestions.
- The Green-Ampt infiltration model was added to discuss the limitation of the SCS-NC method and validate the simulations. Based on this, section 2.4. is now improved and a new figure (4) was added.
- The rainfall data as input parameter for simulation is now better described, and Figure 3 was modified adding a new graph showing the rainfall behavior at two different rain gauges for the Jova and Patricia events.
- Figure 8 (now Figure 9) was modified as suggested.

Here below detailed responses to each comment are provided. The marked-up manuscript version is added at the end of this document.

On behalf of my coauthors.

Lucia Capra
Responses to SC1.

We would like to thank the reviewer for the comments and constructive suggestions made to improve the present work. Please find below the reviewer’s comment and authors’ replies to these comments.

The paper of Lucia Capra and her colleagues provides a valuable contribution to the analysis of the relationships between flood runoff formation and lahar occurrence during hurricanes. Lahar monitoring and characterization of hydraulic properties of soils in a difficult environment deserve to be stressed. The aim of this note is to propose some comments on specific aspects of the analysis.

The core of the study is the assessment of the runoff response to hurricanes and the comparison of simulated flood hydrographs with the monitored lahars. Since no measurements of water discharge are available in the studied catchments, rainfall-runoff modeling (this term should be preferred to “rainfall simulation”) remains essentially uncalibrated. It is well-known that a careful selection of model parameters does not ensure a satisfactory correspondence between simulated and real hydrographs. The lack of rainfall-runoff model calibration and the impossibility of performing it in the studied catchments should be acknowledged and discussed. More could be said, moreover, about the propagation of rainfall excess computed by means of the SCS Curve Number method: this part of runoff simulation is of utmost importance for the timing of flood response. A sensitivity analysis on rainfall-runoff model parameters, although does not surrogate model calibration, could help coping with the uncertainties in the assessment of flood response.

The impossibility of calibrating rainfall-runoff models is the reason why simulated water flood hydrographs have seldom been compared with observed debris flow hydrographs in catchments instrumented for debris flow monitoring. A possible, even if only partial, check of model results with the observed runoff response could consist in the comparison of the time of the first rise of the simulated hydrograph with video images showing the onset of the water flood at the monitoring stations. According to figure 8, this comparison could be possible for Hurricane Manuel at Montegrande (Fig. 8b) and Hurricane Patricia at La Lumbre (Fig. 8d), whereas the early occurrence of lahars prevents it in the other two cases (Figs. 8a and 8c).

We perfectly agree with the reviewer. As pointed out, no measurements of water discharge are available at both La Lumbre and Montegrande watershed, so a model calibration is not possible. We followed the suggestion by L. Marchi and we calibrated the simulated watershed discharge using the information gathered from video images acquired by the monitoring station of La Lumbre ravine during the Patricia event. For Montegrande ravine a calibration would be possible only for the 11 June 2013 event, but considering the strong effect of soil hydrophobicity at the beginning of the rainy season it is difficult to set up a comparison.
For the new version of the manuscript, a rainfall-runoff modeling was performed with both SCS-CN and Green-Ampt (G-A) methods. We decided to also run the simulations with the G-A infiltration method to discuss the limitation of the SCS-CN that does not consider the rainfall intensity (for more detail see response to RC2). The simulated watershed discharge obtained with the G-A method best fits with the initial shallow-water flow observed in the video images; however, main peaks discharges corresponding with the main lahars pulses are equally reproduced with both infiltration models (see new figure R1 at the end of this document). Based on this result, and considering the limited number of parameters needed to apply the SCS-CN method, we focused on the latter method that would be more suitable to adopt in an early warning system devoted to forecast the lag time of main lahar pulses at a specific site. We improved and modified the section “2.4. Rainfall-runoff modelling” as follows (see also response to RC2). Other authors already performed a sensitive analysis of the G-A method, showing that the saturated hydraulic conductivity Ks is a key factor in the estimation of infiltration rates and exerts a notable influence on runoff calculations (i.e. Chen et al., 2015). With respect to the SCS-CN model, the only input parameter is the Curve Number, thus we present a simple comparison for Patricia event at La Lumbre ravine. Results obtained with the 80/75 CN values for channel and vegetated area respectively are compared with two other simulations performed using global values of 75 and 80 (see table R2). This exercise shows that the uncertainty in simulated maximum peak discharge is in the range of 0.1 hr, pointing that a global CN value could be also used for the Volcán de Colima.

Table R1

<table>
<thead>
<tr>
<th>Parameter used in the G-A simulations</th>
<th>6 (mm)</th>
<th>20 (mm/hr)</th>
<th>100 (mm)</th>
<th>0.1</th>
<th>0.35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soil-suction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initial saturation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>final saturation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table R2. SCS-CN simulations with different CNs

<table>
<thead>
<tr>
<th>Surges observed in the images</th>
<th>peak III (23.5 hr)</th>
<th>peak IV (24 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>time in the simulated watershed discharge curve</td>
<td></td>
</tr>
<tr>
<td>75 global</td>
<td>23.4</td>
<td>24.1</td>
</tr>
<tr>
<td>80/75 (channel/vegetated)</td>
<td>23.5</td>
<td>24.1</td>
</tr>
<tr>
<td>80 global</td>
<td>23.5</td>
<td>24.2</td>
</tr>
</tbody>
</table>

2.4. Rainfall-runoff modelling
To better understand the lahar behavior and duration during extreme hydrometeorological events at Volcán de Colima, rainfall-runoff simulations were performed with Flo-2D code (O’Brian et al., 1993). The Flo-2D code routes the overland flow as discretized shallow sheet flow using the Green-Ampt or the SCS Curve number (or combined) infiltration models. For the present work, the SCS Curve Number (SCS-CN, i.e. Mishra and Singh, 2003) was selected but a comparison between both infiltration models is presented below.

The rainfall is applied to the entire watershed, without spatial variability as we are dealing with large-scale, long-duration hurricane-induced rainfall. This rainfall is discretized as a cumulative percent of the total precipitation each 10 minutes. With the SCS-CN model, the volume of water runoff produced by the simulated precipitation is estimated through the use of a single parameter, i.e. the Curve Number (CN). This parameter summarizes the influence of both the superficial and deep soil features, including the saturated hydraulic conductivity, type of land use, and humidity before the precipitation event (for an accurate description of the origin of the method see Rallison, 1980; Ponce and Hawkins, 1996). A similar approach was previously used for modeling debris flow initiation mechanisms (i.e. Gentile et al., 2006; Llanes et al., 2015). To apply the SCS-CN model, it is necessary to classify the soil in one of four groups, each identifying a different potential runoff generation (A, B, C, D; USDA-NRCS 2007). La Lumbre and Montegrande watersheds were subdivided into two main zones: 1) the unvegetated upper cone and the main channel, that consists of unconsolidated pyroclastic material with large boulders embedded in a sandy to silty matrix, and 2) the vegetated lateral terraces, composed by old pyroclastic sequences with incipient soils and are vegetated with pine trees and sparse bushes. Based on these observations, soils were classified between group A and B (Bartolini and Borselli, 2009). CN for the vegetated terraces and for the nude soils is estimated at 75 and 80 respectively (in wet season, Hawkins et al., 1985; Ferrer-Julia et al. 2003). To perform a simulation with the FLO-2D code, two polygons were traced to delimit the un-vegetated portion of the cone from the vegetated area of the watershed, and at each polygon the relative CN value was assigned. At the apex of each watershed a barrier of outflow points were defined to obtain the values of the simulated watershed discharge computed at each 0.1 hr. The simulation was performed with a 20-m digital elevation model. One of the limitations of the SCS-CN model is that it does not consider the effect of the rainfall intensity on the infiltration. In addition, since no measurements of water discharge are available at both La Lumbre and Montegrande basins, it is difficult to calibrate the simulations here presented. To investigate the SCS-CN model uncertainties in the assessment of flood response, the Green-Ampt (1911) model (G-A), sensitive to the rainfall intensity, was also applied and results were compared with the outcome of SCS-CN model. For the G-A method, the main input parameters are the saturated hydraulic conductivity (Ks), the soil suction and the volumetric moisture deficiency. Ks is the key factor in the estimation of infiltration rates and exerts a notable influence on runoff calculations, therefore it requires great care in its measurement (Grimaldi et al., 2013). These values can be extrapolated from reference tables or directly measured with field experiments. Based on the textural characteristics of soils at Volcán de Colima as well as type of vegetation, input parameters were selected from the FLO-2D reference manual. In particular, with a value of Ks of 20 mm/hr the simulated watershed discharge best fits with the precursory shallow-water flow observed in the video images, as it will be showed below (Figure R1). The Ks value of 20 mm/hr is equivalent to the CN value used for the SCS-NC simulation. In fact an empirical relation between Ks and CN has been proposed be Chong and Teng (1986):
\[S = 3.579Ks^{1.208} \]

where \(S \) is the potential retention and it is related to the CN as follow (Mockus, 1972):

\[CN = \frac{2540}{S + 25.4} \]

Based on these equations, a value of \(Ks \) equal to 20 mm/hr corresponds to a CN of 75.5 in the range of values here used for the SCS-NC infiltration model.

The G-A infiltration model was tested at La Lumbré ravine, using the Patricia rainfall and comparing the simulated watershed discharge curve with the available video images. Figure R1 shows the discharge curve that best fits with the data gathered from the images (Table #), based on which the two method were qualitative calibrated. The G-A infiltration model nicely reproduce the initial scouring of a muddy water and it corresponds with the first increase in the simulated watershed discharge. The SCS-CN infiltration model is not able to reproduce this first water runoff. This can be explained considering that the initial abstraction due to the interception, infiltration and surface storage, is automatically computed in the SCS-NC model as 0.2S, being probably too high for the studied area. In contrast, with the G-A method, the initial abstraction can be modified and best results were obtained with a value of 6 mm that corresponds to a surface typical of a vegetated mountain region (Table #). However, both infiltration models give similar results for the main peaks of the simulated maximum watershed discharge that correspond with the arrival of the main lahar pulses as observed from the image (Figure R1). These results show that the G-A model is much more reliable to detect precursory slurry flows, while both models are equally able to catch the main surges of a lahar. One important point is that the simulations are here used to set up an early warning system to forecast the lag time of the main lahar surges. The first slurry flows were here important to calibrate the G-A simulation but they do not represent an essential data for the early warning system. In addition, input data for the G-A method often are difficult to set, requiring great care in its measurement; in contrast, the output of the SCS-CN method only depends on the CN value. The SCS-CN method has been largely used in rainfall-runoff modeling, and we consider that is a valuable method for the objective of the present work, as we are not seeking for a quantitative estimation of the watershed discharge but on the arrival time of the main lahar pulses.
Response to RC1.

We would like to thank the reviewer for the comments and constructive suggestions made to improve the present work. Please find below the reviewer’s comment and authors’ replies to these comments.

The paper provides an interesting study about the relationship between the rain induced by hurricanes and the generation of lahars. The paper mostly requires an English grammar revision. Nevertheless, I suggest that as the Coulomb failure criterion was not mentioned in the paper, to include it within the paper, perhaps when the authors mention landslide triggering empiric criterion (section Discussion).

We consider that the Coulomb failure criterion is out of the focus of the present paper, we are not discussing the condition of lahar initiation; lahars at Volcan de Colima originate from a progressive erosion of material from the river bed.
It draws attention that in the abstract, numerical modeling of rain and infiltration is promised. None of them are fulfilled. The O’Brian model is a shallow water approach for surface flows, despite the claim done by the authors within the paper that it was used for rain fall modeling.

We agree with the reviewer and we were wrongly using the terminology. in fact the paper presents rainfall-runoff simulations, as also point out by the SC1.

In addition, there are few more suggestions listed below.

We took into account of the following suggestions. The English revision was based on the suggestions made by RC2 and SC2.

1 Abstract
Review English
2 Methods and data
1. line 132: use primary source (Gravelius, 1914) done
2. line 175. Review English.
3. Line 224: Mistake, the aim of Flo2D is not to do rainfall simulations. Changed to rainfall-runoff simulation
4. Line 228: clarify how do you simulated the precipitation. This is now clarified as follow. The rainfall is applied to the entire watershed, without a spatial variation, and it is discretized as a cumulative percent of the total precipitation each 10 minutes.
5. Line 235: zones done
3 Results
1. Line 278, figure 5: keep the previously used convention for the sub-figure numbering (top left hand side). done
8. Line 400: if actually “it could have been possible” , why it was not possible? It is always risky to extrapolate, thus to advise extrapolations. This refers that if at the time of Patricia event this model was ready, the simulation could have been run to have a forecast of the arrival times of the main lahar surges. The text was slightly modified as follow

For the 2015 Hurricane Patricia event the weather forecast predicted an estimated value for the total rainfall, and also the approximate time of its landfall. Based on the deigned storm obtained with the rainfall/time distribution of the analyzed events, it would have been possible to anticipate when lahars started along the La Lumbre ravine, and the arrival time of main pulses. Then, this first prediction could be constrained using rainfall-runoff modeling based on real-time monitoring data, as simulations do not take more than 30 minutes to run.

Responses to RC2
We would like to thank the reviewer for the comments and constructive suggestions made to improve the present work. Please find below the reviewer’s comment and authors’ replies to these comments.
Main issues
As mentioned above, the rainfall simulations used in this work need to be clarified and care needs to be taken when analysing and drawing conclusions from the simulation results. In particular:

1. What are the assumptions of the SCS curve model and how may it affect results?
The SCS approach is a simplified method for estimating rainfall runoff. Lower curve numbers result in less runoff for the same amount of rainfall. However, as stated on lines 229-231, this model simplifies the complex relationship between rainfall and overland flow into a single number. A weakness of this approach is that the curve number does not consider the effects of single storm properties (e.g. rainfall intensity) on infiltration.

We agree with the reviewer that SCS-NC method does not consider the effect of the rainfall intensity on infiltration, a key point for the cases here analyzed. But it is worth mentioning that here the rainfall input for the FLO-2D simulation is given as a no-linear hydrograph curve where accumulated rainfall is discretized at each 10 minutes interval (as detected with the raingauge). Based also on the comment by L. Marchi (SC1), we tested the Green-Ampt (G-A) rainfall-infiltration method and we calibrated it with the images available for the Patricia event along the La Lumbre ravine, at least for the arrival time of the first slurry flow and for the main surges (this last correlation was already presented in fig.8). The parameters used for the Green-Ampt method were selected from FLO-2D reference tables according to the textural characteristics of the soil on the watershed (Table R1). The Ks (saturated hydraulic conductivity) of 20 mm/hr gives the best fit, and based on the equation proposed by Chong and Teng (1986) it corresponds to a CN of 75.5 in the range of the value used for the simulation performed with the SCS-NC method (see detailed explanation in the text below). It is worth to mention that the input parameters here used for the G-A model represent an average value for the entire watershed

<table>
<thead>
<tr>
<th>Parameter used in the G-A simulations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstraction</td>
<td>6 (mm)</td>
</tr>
<tr>
<td>Ks</td>
<td>20 (mm/hr)</td>
</tr>
<tr>
<td>soil-suction</td>
<td>100 (mm)</td>
</tr>
<tr>
<td>initial saturation</td>
<td>0.1</td>
</tr>
<tr>
<td>final saturation</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Figure R1. Comparison of simulated watershed discharge curves based on SCS-NC and G-A infiltration models. Qualitative calibration is here proposed based on the flow discharge as observed at the MSL site.

Figure R1 shows the comparison of the discharge curve obtained with the SCS and G-A methods and their comparison with selected images of the flow along the La Lumbre channel during the Patricia event.

One first issue is the coincidence of the first water runoff along the channel observed in the image with the rise of the discharge in the curve modeled with G-A method, as the SCS-CN is not able to reproduce it. In fact, we performed additional simulation to try to reproduce the initial slurry flow with the SCS method but it was impossible. This can be explained considering that the model automatically assumes an initial abstraction (rainfall intercepted by vegetation) of 0.2S, where S is the potential retention included in the CN calculation (CN=2540/(S+25.4) (Mockus, 1972), value that it is too high for the studied area. In contrast, the value of initial abstraction can be controlled performing the simulations with the G-A method. However, the main peak discharges corresponding with the main lahar pulses are equally reproduced with both models. Under this evidence, we are able to affirm that the G-A method is much more reliable to detect the first streamflow, but the SCS method is also able to catch the main surges. One important point is that the simulations are here used to set up an early warning system to forecast the lag time of main lahar pulses at a specific site. The first water runoff along the channel was fundamental to calibrate the G-A simulation but it is not an essential data for the early warning system. In addition, input data for the G-A method are probably much more difficult to set, in contrast to the SCS method where only one parameter is needed. A new section has been added within the paragraph “2.4.
Rainfall-runoff modeling” to show the comparison between the two infiltration methods based on which the SCS model was selected to be used in the early warning system. The SCS method has been largely used in rainfall-runoff estimations, and we consider that is a valuable method for the objective of the present work. This section was modified as follow:

2.4. Rainfall-runoff modelling

To better understand the lahar behavior and duration during extreme hydrometeorological events at Volcán de Colima, rainfall-runoff simulations were performed with Flo-2D code (O’Brien et al., 1993). The Flo-2D code routes the overland flow as discretized shallow sheet flow using the Green-Ampt or the SCS Curve number (or combined) infiltration models. For the present work, the SCS Curve Number (SCS-CN, i.e. Mishra and Singh, 2003) was selected but a comparison between both infiltration models is presented below. The rainfall is applied to the entire watershed, without spatial variability as we are dealing with large-scale, long-duration hurricane-induced rainfall. This rainfall is discretized as a cumulative percent of the total precipitation each 10 minutes. With the SCS-CN model, the volume of water runoff produced by the simulated precipitation is estimated through the use of a single parameter, i.e. the Curve Number (CN). This parameter summarizes the influence of both the superficial and deep soil features, including the saturated hydraulic conductivity, type of land use, and humidity before the precipitation event (for an accurate description of the origin of the method see Rallison, 1980; Ponce and Hawkins, 1996). A similar approach was previously used for modeling debris flow initiation mechanisms (i.e. Gentile et al., 2006; Llanes et al., 2015). To apply the SCS-CN model, it is necessary to classify the soil in one of four groups, each identifying a different potential runoff generation (A, B, C, D; USDA-NRCS 2007). La Lumbre and Montegrande watersheds were subdivided into two main zones: 1) the unvegetated upper cone and the main channel, that consists of unconsolidated pyroclastic material with large boulders embedded in a sandy to silty matrix, and 2) the vegetated lateral terraces, composed by old pyroclastic sequences with incipient soils and are vegetated with pine trees and sparse bushes. Based on these observations, soils were classified between group A and B (Bartolini and Borselli, 2009). CN for the vegetated terraces and for the nude soils is estimated at 75 and 80 respectively (in wet season, Hawkins et al., 1985; Ferrer-Julia et al. 2003). To perform a simulation with the FLO-2D code, two polygons were traced to delimit the un-vegetated portion of the cone from the vegetated area of the watershed, and at each polygon the relative CN value was assigned. At the apex of each watershed a barrier of outflow points were defined to obtain the values of the simulated watershed discharge computed at each 0.1 hr. The simulation was performed with a 20-m digital elevation model. One of the limitations of the SCS-CN model is that it does not consider the effect of the rainfall intensity on the infiltration. In addition, since no measurements of water discharge are available at both La Lumbre and Montegrande basins, it is difficult to calibrate the simulations here presented. To investigate the SCS-CN model uncertainties in the assessment of flood response, the Green-Ampt (1911) model (G-A), sensitive to the rainfall intensity, was also applied and results were compared with the outcome of SCS-CN model. For the G-A method, the main input parameters are the saturated hydraulic conductivity (Ks), the soil suction and the volumetric moisture deficiency. Ks is the key factor in the estimation of infiltration rates and exerts a notable influence on runoff calculations, therefore it requires great care in its measurement (Grimaldi et al., 2013). These values can be extrapolated from reference
tables or directly measured with field experiments. Based on the textural characteristics of soils at Volcán de Colima as well as type of vegetation, input parameters were selected from the FLO-2D reference manual. In particular, with a value of K_s of 20 mm/hr the simulated watershed discharge best fits with the precursory shallow-water flow observed in the video images, as it will be showed below (Figure R1). The K_s value of 20 mm/hr is equivalent to the CN value used for the SCS-NC simulation. In fact an empirical relation between K_s and CN has been proposed by Chong and Teng (1986):

$$S = 3.579K_s^{1.208}$$

where S is the potential retention and it is related to the CN as follow (Mockus, 1972):

$$CN = \frac{2540}{S + 25.4}$$

Based on these equations, a value of K_s equal to 20 mm/hr corresponds to a CN of 75.5 in the range of values here used for the SCS-NC infiltration model.

The G-A infiltration model was tested at La Lumbre ravine, using the Patricia rainfall and comparing the simulated watershed discharge curve with the available video images. Figure R1 shows the discharge curve that best fits with the data gathered from the images, based on which the two method were qualitative calibrated. The G-A infiltration model nicely reproduce the initial scouring of a muddy water and it corresponds with the first increase in the simulated watershed discharge. The SCS-CN infiltration model is not able to reproduce this first water runoff. This can be explained considering that the initial abstraction due to the interception, infiltration and surface storage, is automatically computed in the SCS-NC model as 0.2S, being probably too high for the studied area. In contrast, with the G-A method, the initial abstraction can be modified and best results were obtained with a value of 6 mm that corresponds to a surface typical of a vegetated mountain region. However, both infiltration models give similar results for the main peaks of the simulated maximum watershed discharge that correspond with the arrival of the main lahar pulses as observed from the image (Figure R1). These results show that the G-A model is much more reliable to detect precursory slurry flows, while both models are equally able to catch the main surges of a lahar. One important point is that the simulations are here used to set up an early warning system to forecast the lag time of the main lahar surges. The first slurry flows were here important to calibrate the G-A simulation but they do not represent an essential data for the early warning system. In addition, input data for the G-A method often are difficult to set, requiring great care in its measurement; in contrast, the output of the SCS-CN method only depends on the CN value. The SCS-CN method has been largely used in rainfall-runoff modeling, and we consider that is a valuable method for the objective of the present work, as we are not seeking for a quantitative estimation of the watershed discharge but on the arrival time of the main lahar pulses.

2. How was rainfall applied over the simulation domain?
The authors state that the rainfall 10 minute intervals were applied to the simulation (lines 249-50). However, there is no indication if this varied spatially. If a spatially homogeneous rainfall input was used, the authors need to indicate this and, in discussion, consider the effect
of this assumption on results and implication for the migratory, long duration rainfall scenarios.

The rainfall was applied to the entire watershed, no spatial variation was assumed. As stated before, the total amount of accumulated rainfall is discretized in 10 minutes interval, introduced in the code as a no-linear hydrograph. During tropical rainfalls rains are nearly stationary on top of the volcano. This can be observed by comparing rainfall data from different stations (fig R2). This figure will be added as extra panel in figure 3.

![Rainfall Hydrograph](image)

Fig. R2. Normalized rainfall of the Jova and Patricia events as gathered from different stations, pointing to a quasi-stationary rainfall behavior.

3. Related to point 1, in Fig. 8, simulated discharge shows better correlation to identified lahar pulses during Hurricanes Jova, Manuel and Patricia. In these events, rainfall intensity is much lower and cumulative rainfall is more linear than the 11 June event. This highlights a potential limitation of the runoff erosion model that needs to be identified and discussed.

The 11 June 2013 event is presented to stress the fact that at the beginning of the rains season no-stationary, orographic events trigger lahars after few minutes of accumulated rainfall (~10 mm); in those cases, main pulses are clearly controlled by rainfall peak intensities, mainly because of a strong hydrophobic effect of the soils (see Capra et al., 2010). Therefore, the model here presented does not work for such type of events and can be only used during tropical rains associated to hurricanes, with low rainfall intensities and long durations. This concept is clearly stated in the discussion:

This model is strictly related to long-duration and large-scale rainfall events hitting tropical volcanoes such as the Volcán de Colima. In contrast, during mesoscale non-stationary rainfalls, typical at the beginning of the rainy season, lahars are usually triggered at low accumulated rainfall values and mainly controlled by rainfall intensity due to the hydrophobic behavior of soils, and they usually consist of single-pulse events with one block-rich front that last less than one hour (i.e. Vázquez et al., 2016b). In perspective, the results presented here can be used to design an Early Warning System (EWS) for hurricane-induced lahars, i.e. event triggered by long-duration and large-scale rainfalls.
4. Although correlation between observed lahar pulses and simulated discharge indicate a level of agreement between simulation and reality, the models have not been calibrated to real world (i.e. measured discharge) data. In effect, the model can then only indicate differences in watershed response between the Montegrade and La Lumbre catchments. Based on these issues, elements of the discussion and conclusion may need modification:

We totally agree. However, based on the calibration presented in the new section we consider that the model here used is reliable. Yes, Montegrande and La Lumbre have a different watershed response, which clearly controls the arrival time of the main lahar pulses that can be simulated with the rainfall-runoff modeling here proposed.

Line 338: pulses better match simulated watershed discharge. This is a crucial distinction, as without calibration we cannot estimate the potential error in the discharge rate.

Again, we think that this aspect is now better justified with the new information based on the comparison between G-A and SCS methods.

Line 338-340: "Nevertheless ...", in Fig. 8c, only one of the four observed pulses coincide with the simulated discharge - this correlation could be (in my opinion likely is) pure coincidence for this event - you need to account for this. I would recommend removing this sentence entirely, as it is largely repeated in lines 357-359.

As stated into the text the 11 June 2013 event does not fit with the model here proposed, but apparently only the last largest pulse correspond with the simulated watershed discharge.

Line 368-371: "This is a well documented mechanism ..." it is hard to interpret what is being said here. What is the difference between discharge rate and watershed discharge? How does one control the other? Rainfall intensity and watershed shape seem to control the arrival of main pulses more than discharge.

We agree we the reviewer and we simplified this section as follow.

Based on data presented here, formation of pulses within a lahar is mostly controlled by the watershed shape that regulates the timing of the arrival of main pulses, depending on the rainfall behavior. Nevertheless, the last pulse is always the largest in volume.

Overall, I suggest to the authors that the strength of this manuscript is in the correlations of multiple streams of data (rainfall intensity, cumulative rain, geophone records) to examine the relationship between rainfall and lahar pulses. Since the rainfall simulations are uncalibrated, they add some context to the discussion, but simulation results (in their current form) cannot be used to draw conclusions about the relationship. I believe the manuscript would be greatly improved by a rewording of the discussion, reducing the emphasis on rainfall simulations and instead focusing on the relationship between rainfall characteristics and lahar pulses.

Base on the reviewers’ comments and the comparison between the SC-NC and G-A infiltration models, we consider that at present our model is much more well justified. Simulations represent an
important issue for the present work and, as proposed here, they can be used to perform an early warning system at least to determine the time arrivals of main lahars pulses.

Technical and minor issues

Please see the attached .pdf for corrections to English style and grammar. All the suggestion to English style and grammar were taken into account.

Line 38, 160, 219: What is a 'stormwater'? This is unclear terminology
This expression was changed to “theoretical rainfall distribution curve”

Line 58: Ruapehu is not in a tropical region.
It was also observed by SC”, so this example was removed

Line 161, 165, 170/Figure 1: "MgMS" do you mean MSMg?
Yes, it is now corrected.

Line 163/Figure 1: "LMS" do you mean MSL?
Yes, now corrected

Line 193/194: Change to "Volcán de Colima"
Done

Line 202/203: "Sierra Madre Occidental high relieves" perhaps just Sierra Madre Occidental range?
Also based to the SC2 reviewer, the sentence was changes.
The system began to develop on 18 October over the Pacific Ocean, strengthened into a hurricane shortly after 00:00 GMT on 22 October and early on 23 October it reached its maximum category of 5, before losing strength as it moved onto the Sierra Madre Occidental range.

Line 225: Reference is O’Brien et al.
Done

Line 317-318 and 320: See above discussion, I think it is important to state the pulses match with peak simulated discharge.
Also based on SR2, the text was clarified.

Line 322-324: Given model assumptions and disparities when compared to the other events, there is a high chance this correlation is coincidental. If you want to note the correlation here, you should also highlight the disparity.
We consider that as already stated into the text, the 11 June 2013 event is here reported only to show the different watershed response at the beginning of the rain season. The model here proposed will be not used to predict the arrival of main pulses for the events at the beginning of the rain season.

Line 333-335: Reword sentence to fix grammar... Seismic and visual data from events analysed here provide evidence to key factors...
Also based on SC2 comment, the sentence was changes as follow:
Based on the seismic and visual data gathered from the events analyzed here, it is possible to identify the key factors in controlling the arrival timing of main lahar fronts.

Line 338-380 and 357-359: See above, these two sentences are almost exactly the
same. Recommend removing the first instance.
We agree and 338-380 lines were deleted.

Line 398-399: "Based on the deigned storm obtained..." meaning is unclear, be specific on the requirements to anticipate start time and arrival of lahar pulses.

For the 2015 Hurricane Patricia event the weather forecast predicted an estimated value for the total rainfall, and also the approximate time of its landfall. Based on the deigned storm obtained with the rainfall/time distribution of the analyzed events, it would have been possible to anticipate when lahars started along the La Lumbre ravine, and the arrival time of main pulses. Then, this first prediction could be constrained using rainfall-runoff modeling based on real-time monitoring data, as simulations do not take more than 30 minutes to run.

Fig. 1 caption: "...locations of the monitoring stations are indicated by triangles"
Done

Fig. 1: Is station MSMg_2015 identified in the manuscript? If not, remove.
The station is now included into the text.

Fig. 3b/c: As a normalised plot, there is no need for the ’y’ (norm) axis to be greater than one. Adjust to be between 0 and 1.
Done

Fig. 5c is unnecessary, remove.
Done

Fig. 8 needs to be improved, suggest the following:
• In the caption, rain intensity is a gray line, but in the figure it is gold/yellow.
• Fig. 8b - "Rain" and "Rain intensity” legend entries are switched
• Left axis (%norm) should only be between 0 and 1 (see above)
• Arrows in Fig. 8c do not seem to indicate anything - should "first stream flows" text be placed nearby?
• Color and line choice makes it hard to discriminate between rain intensity and discharge. Try adjust colors or line thicknesses.

Figure was improved as suggested (see next page)

Table 1: The manuscript suggested ’Jova’ had seismic records for Montegrad ravine?
Yes, corrected.

Please also note the supplement to this comment:

All suggested changes were done
Responses to V. Manville SC2

We would like to thank the reviewer for the comments and constructive suggestions made to improve the present work. Please find below the reviewer’s comment and authors’ replies to these comments.

Title. The reviewer suggests to mention rainfall-runoff simulation into the title.

We agree and we modified it as follow:
“Hydrological control of large hurricane-induced lahars: evidences from rainfall-runoff modelling, seismic and video monitoring”

1(line 31). How do you define lahar size? By peak discharge, and if so where? Or by peak seismic amplitude by using this as a proxy for lahar volumetric discharge, even though the seismic energy output of a lahar is a function of many factors including volumetric discharge, sediment concentration and sediment grain-size distribution.

Yes, we used the amplitude as a proxy for lahar volumetric discharge. On previous published works at Volcán de Colima (Vazquez et al., 2016), the size of lahars has been classified based on their seismic response (amplitude, validated with image data) and duration. With available images, the maximum pick discharge was calculated and assigned to the maximum amplitude recorded form
the seismic station. We agree that it is not always possible to correlate the amplitude of the seismic signal with the flow depth, but based on real time data gathered at Colima, there is a quite good correlation for those large events (See. Fig. 5 Vazquez et al., 2016). The figure below extracted from Vazquez et al., 2016, clearly point to a correlation between lahar amplitude and flow discharge.

To better state this concept we slightly change the text at line # 183.

In particular, for lahars at Volcán de Colima a correlation between the maximum peaks in amplitude and the maximum peaks in flow discharge was found (Fig. 5 in Vázquez et al., 2016). Fluctuation in seismic energy along the vertical component reflects variation in flow discharge.

2 (line 37). This sentence is unclear, there appear to be some key words missing. Some kind of couple

Here we refer that based on rainfall data of Manuel and Patricia hurricanes, which show a very similar behavior, a “synthetic” rainfall curve has been designed (in accumulated percentage). If the amount of rain can be estimated prior to an event, this curve could be used to run a rainfall-runoff simulation to try to have a possible forecast. The sentence was modified as it:

A theoretical rainfall distribution curve was here designed based on the rainfall/time distribution of hurricanes Manuel and Patricia. Then, weather forecasts can be used to run simulations prior to
the actual event, in order to estimate the arrival times of main pulses, usually characterized by block-rich fronts, which are responsible for most of damage to infrastructures and loss of goods and lives.

3(line 44). Hurricanes and cyclones are not globally distributed.

We modified the sentence as suggested:

“In recent years hurricanes have had catastrophic effects on volcanoes in the tropics through the triggering of lahars (sediment-water gravity-driven flows on volcanoes).”

3A(line 55). Mt Ruapehu is not a tropical volcano, despite its rich rain-triggered lahar

The Mt. Ruapehu reference was deleted.

4 and 6 (line 164 and 188). Insert the full date.

The full date for Patricia and Manuel date of landfalls were added.

In contrast, in 2015 the MgMS site was destroyed by pyroclastic flows during the 10-11 July explosive activity, and in October 2015 the new station was still under construction.

Hurricane Manuel (category 1), hit the Pacific coast on 15 September 2013 causing several damage to mountainous region in Guerrero state, triggering several landslides that caused up to 96 deaths and left several villages cut of, as while thousands of tourists were trapped at Acapulco and Ixtapa international airports.

6A (line 200). The sentence was modified as suggested.

Hurricane Patricia on 2015 was considered as the strongest hurricane on record to affect Mexico. The system began to develop on 18 October over the Pacific Ocean, strengthened into a hurricane shortly after 00:00 GMT on 22 October and early on 23 October it reached its maximum category of 5, before losing strength as it moved onto the Sierra Madre Occidental range. Landfalls occurred around 23:00 GMT on 23 October along the coast of the Mexican state of Jalisco near Playa Cuixmala, about 60 km west-northwest of Manzanillo.

7(line 234). This sentence reads like there are three zones, unless you are combining the channel and terraces into one. Clarify please.

The sentence was clarified:

The watershed of La Lumbre and Montegrande ravines were subdivided into two main zones: 1) the unvegetated upper cone and the main channel that both consist of unconsolidated pyroclastic material with large boulders embedded in a sandy to silty matrix, and 2) the vegetated lateral terraces.

7A (line 279). Move this sentence to line 173.

This sentence was moved as suggested (see answer to point 1)

8 and 9 (line 311-329). Move the underlined text down to line 316 and move the indicated block of text to line 316 before the insertion.

Done
Finally, analyzing the simulation in the Montegrande ravine for the 11 June 2013 event, it is possible to observe a different behavior. The lahar starts as less than the 10% of the total rain is accumulated, and the main lahar pulses perfectly correlate with the peak rainfall intensities, and only the last largest pulse correlates with the watershed peak discharge. For la Lumbre watershed, in 2015 a clear correlation between peak rainfall intensities and simulated watershed discharge is not clear. For the Patricia event, along the La Lumbre ravine, first slurry flows also start after 40% or total rainfall, but main lahar pulses fit better with the simulated peaks watershed discharge.

10. A critical weakness of using the 40% of total rainfall threshold is that it is difficult to know when this point has been reached when it is still raining, unless you have a great deal of faith in your weather forecasts. Do you have accurate predicted total rainfall and distribution curves for these events that could be run through your simulator and compared with the actual lahar events?

We agree with the reviewer. Here we are only pointing to the evidences get from data here presented (not from the simulations!) that after 40% of the total rainfall first lahars are detected for all the analyzed events. This corresponds to an amount of accumulated rainfall of 100, 120 and 160 mm of rain for Jova, Manuel and Patricia respectively. This evidence points that after at least 100 mm of rains had accumulated (measured in real time from raingauges) lahars can occur. The early warning system will be based on rainfall-runoff modeling results. For the Patricia event the trajectory and time of landfall was quite well predicted, and data about the amount of rainfall were also provided. The text was modified as follow:

For the Jova, Manuel and Patricia events, lahars started after the 40% of total rain had accumulated (corresponding to c. 100, 120 and 160 mm of rain respectively), and apparently the timing for the initial pulses correlates well with the peaks of the rainfall intensity for the Montegrande ravine, while for La Lumbre ravine they better match with the peak simulated watershed discharge.

11 (line 335). This implies that there is no lag time between the peak rainfall intensity measured 6 km away on another volcanic edifice and the arrival of the lahar peak at the detectors.

As observed for the Hurricane Jova, rainfall data from the station at Montegrande and La Lumbre ravine are almost identical (more than 8 km away). This means that the rainfall behavior is quite constant over a large area during a hurricane. Similar behavior is observed for Patricia event, by comparing the Nevado station with the raingauge at Ciudad de Colima. So even if data here used for the Hurricane Patricia are from a station located 6 km away from Volcan de Colima, we are considering that the rainfall intensity was quite homogeneous over these two volcanoes. The following figure will be added as an extra panel to Fig. 3.
Fig. R2. Normalized rainfall of the Jova and Patricia event as gathered from different stations, pointing to a quasi-stationary rainfall behavior.

12. How long does it take to run Flo-2d, could it be run in real-time by feeding in the incoming rainfall intensity data?
For the simulation here performed, using a 20 m DEM in resolution, each simulation took no more than 30 minutes at our facility so yes, it could be possible to run simulation in real time as data are acquired.

13. Clarify.
The phrase was slightly modified

The observed difference between Montegrande and La Lumbre ravines can be correlated with the different areas and shapes of the two catchments. In fact, due to its elongated shape ($K_G = 1.7$) and small area (2 km^2), the Montegrande watershed shows a quicker response between rainfall and discharge, with a rapid water concentration at different point along the main channel (Fig. 1b).

14. So the simulation cannot duplicate the initial hydrophobic behaviour?
No, with the parameter here used, even changing the SCS to 95% (almost impermeable) the simulation was not able to reproduce water discharge at the time the lahars were detected. This is probably again related with the initial abstraction that is fixed by the program based on the CN value (see comment below and responses to reviewer RC2).

15. I’m assuming that these catchments are ungauged, so there is no way of calibrating the simulated discharge produced by the rainfall-runoff routing model?
Yes the reviewer is correct, direct measurement of watershed discharge is not available. Also based on the comments by the other reviewers we added a section to try to validate the simulation using the video images recorded by La Lumbre monitoring station. Apparently first stream flows are detected at the same time the simulated watershed discharge curve increases. Please refer to response to reviewer RC2 for more detail on this point.
Hydrological control of large hurricane-induced lahars: evidences from rainfall-runoff modelling, seismic and video monitoring.

Lucia Capra¹, Velio Coviello¹, ², Lorenzo Borselli³, Víctor-Hugo Márquez-Ramírez¹, Raul Arámbula-Mendoza⁴

¹ Centro de Geociencias, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Queretaro, México
² Free University of Bozen-Bolzano, Facoltà di Scienze e Tecnologie, Italy
³ Instituto de Geología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
⁴ Centro Universitario de Estudios e Investigaciones en Vulcanología (CUEIV), Universidad de Colima, Colima, México.

Abstract

The Volcán de Colima, one of the most active volcanoes in Mexico, is commonly affected by tropical rains related to hurricanes that form over the Pacific Ocean. In 2010, 2013 and 2015 hurricanes Jova, Manuel and Patricia, respectively, promoted triggered tropical storms that accumulated deposited up to 400 mm of rain in 36 hrs, with maximum intensities of 50 mm/hr. Effects were devastating, with the formation of multiple lahars along La Lumbre and Montegrande ravines, which are the most active channels in sediment delivery on the S-SW flank of the volcano. Deep erosion along the river channels and several marginal landslides at their side were observed, and damages to bridges and paved roads for the arrival of block-rich flow fronts resulted in damages to bridges and paved roads in the distal reaches of the ravines. Based on data from real-time monitoring...
The temporal sequence of these flow events is reconstructed and analyzed using monitoring data (including video images, seismic records and rainfall data), with respect to the rainfall characteristics and the hydrological response of the watersheds based on rainfall-infiltration-runoff numerical simulation. For the studied events, lahars occurred after 5-6 hours after the onset of rainfall started, lasted several hours and were characterized by several pulses with block-rich fronts and a maximum flow discharge of 900 m³/s. Rainfall-infiltration-runoff simulations were performed with the Flo-2D code using the SCS-Number and/or the Green-Ampt infiltration-model, providing similar results in detecting simulated maximum watershed peaks discharge. Results show a different behavior for the arrival times of the first lahar pulses that correlate with the simulated catchment’s peak discharge for La Lumbre ravine and with the peaks in rainfall intensity for Montegrande ravine. This different behavior is strictly related to the area and shape of these two watersheds. Nevertheless, in all for all the analyzed cases, the largest lahar pulse always corresponds with the last one and correlates with the simulated maximum peak discharge of these catchments. Data presented here show that main-flow pulses within a lahar are not randomly distributed in time, and they can be correlated with rainfall peak intensity and/or watershed discharge, depending on the watershed area and shape. This outcome has important implications for hazard assessment during extreme hydro-meteorological events since it could help in providing real-time alerts. A stormwater theoretical rainfall distribution curve was designed for Volcán de Colima based on the rainfall-time distribution of hurricanes Manuel and Patricia, and in case of available weather forecasts, this can be used to run simulations using weather forecasts prior to the actual event, in order to estimate the arrival time arrivals of main lahar
pulses, usually characterized by block-rich fronts, that are responsible of most of damage to infrastructures and loss of goods and lives.

Keywords: lahar, hurricane, rainfall/infiltration–runoff simulation modeling, Volcán de Colima, Mexico.

1. Introduction

In past recent years hurricanes have had catastrophic effects on volcanoes in the tropics, through the triggering of lahars (sediment-water gravity-driven flows on volcanoes). One of the most recent episodes is represented by the 2009 Hurricane Ida in El Salvador in 2009 that caused several landslides and debris flows from the Chichontepec volcano, killing 124 people. In 1998 Hurricane Mitch triggered the collapse of a small portion of the inactive Casita volcano (Nicaragua), originating a landslide that suddenly transformed into a lahar that devastated several towns and killed 2000 people (Van Wyk Vries et al., 2000; Scott et al., 2005). A similar event was observed in 2005 when tropical storm Stan triggered landslides and debris flows from the Toliman Volcano (Guatemala), causing more than 400 fatalities at Panabaj community (Sheridan et al., 2007). Other examples can be found at the volcanoes—Pinatubo (Philippines), Merapi and Semeru (Indonesia), Soufrière Hills (Montserrat) and Tungurahua (Ecuador) volcanoes, Mt. Ruapehu (New Zealand), where tropical storms and heavy rainfall seasons have triggered high-frequency lahar events (Umbal and Rodolfo, 1996; Cronin et al., 1997; Lavigne et al., 2000; Lavigne and Thouret, 2002; Barclay et al., 2007; Dumasnil et al., 2010; Doyle et al., 2010, de Bélizal et al., 2013 Jones et al., 2015).
Volcán de Colima (19°31’N, 103°37’ W, 3860 m a.s.l., Fig. 1), one of the most active volcanoes in Mexico, is periodically exposed to intense seasonal rainfalls that are responsible for the occurrence of lahars from June to late October (Davila et al., 2007; Capra et al., 2010). Rain-triggered lahars represent a very common process during the rainy season (June-October) at Volcán de Colima (Davila et al., 2007; Capra et al., 2010; Vázquez et al., 2016a). They usually affect areas as much as 15 km from the summit of the volcano, with resulting damage to bridges and electric power towers (Capra et al., 2010), and are more frequent just after eruptive episodes such as dome collapses emplacing block-and-ash flow deposits (Davila et al., 2007; Vázquez et al., 2016b). Several hurricanes commonly hit the Pacific Coast each year and proceed inland as tropical rainstorms reaching the Volcán de Colima area. In particular, in 2011, 2013 and 2015 Hurricanes Jova, Manuel and Patricia respectively triggered long-lasting lahars along main ravines draining the edifice, causing severe damages on to roads and bridges, and leaving civilians uncommunicated for few days several communities in a radius of 15 km from the volcano cut off for several days.

Previous work (Davila et al., 2007; Capra et al., 2010) analyzed the lahars frequency at Volcán de Colima in relation with the eruptive activity and the rainfall characteristics of rainfalls. Lahars are more frequent at the beginning of the rainy season, during short (< 1 hour) no-stationary rainfall events, with variable rainfall intensities and with only 10 mm of accumulated rainfall. This behavior has been attributed to a hydrophobic effect of soils on the volcano slope (Capra et al., 2010). In contrast, in the late rainy season, when tropical rainstorms are common, lahars are triggered depending on the 3-day antecedent rainfall and with intensities that increase as the total rainfall amount increases (Capra et al., 2010). The
lahars record catalog used for these previous studies was based on seismic data. Since 2011 a visual monitoring system have has been installed on the Montegrande and La Lumbre ravines (Figure 1), based on which a quantitative characterization of some events (i.e. type of flow, velocity, flow discharge, flow fluctuation) have been possible (i.e. Vázquez et al., 2016a; Coviello et al., under revision). The aim of the present paper is to better understand the lahars initiation processes of large lahars and their dynamical behavior, especially during hurricane events, when more damages have has been observed on inhabited areas. In particular, the arrival time of the main lahar’s front/surge at the monitoring stations is here analyzed with respect to the rainfall characteristics (rain accumulation and intensity) and in relation with to the watershed’s hydrological response of the watersheds-based on a rainfall/infiltration-runoff numerical simulation.

The occurrence of discrete surges within debris flows and lahars have has been attributed to spatially and temporally distributed lahar-sediment sources, temporary damming, progressive entrainment of bed material or change in slope angle (i.e. Iverson 1997; Marchi et al. 2002; Takahashi 2007; Zanuttigh and Lamberti 2007; Doyle et al., 2010; Kean et al., 2013). Without excluding previous models, data from large lahars triggered by Hurricanes Jova, Manuel and Patricia here presented shows that main pulses within a lahar are not randomly distributed in time, and they can be correlated with rainfall peak intensity and/or watershed discharge, depending on: 1) the watershed shape, and 2) hydrophobic behavior subject to the antecedent soil moisture. These lahars triggered by the hurricanes Jova, Manuel and Patricia are here used as they correspond with the best documented events occurred during past years, and they are will be also compared with a flow triggered by an extraordinary hydrometeorological event that occurred at the begin of the rain season (11
to better show the drastic change on lahar initiation due to the hydrophobic effect of soils at Volcán de Colima. Based on rainfall distribution over time for the analyzed events, a stormwater *theoretical rainfall distribution curve* is here designed, which can be used to run simulations prior to an event to have an estimation of the time arrivals of main pulses when weather forecast is available. The data Results here presented have important implication for hazard assessment during extreme hydrometeorological events and can be used as a complementary tool of to develop an an *Early Warning System* (EWS) for lahars on tropical volcanoes.

2. Methods and data

2.1. La Lumbre and Montegrande watersheds

The source area of rain-triggered lahars at Volcán de Colima corresponds to the uppermost unvegetated portion of the cone (Fig. 1 and 2a), with slopes between 35° and 20°, that also corresponds with an area of high connectivity, being prone to rills formation and erosive processes (Ortiz-Rodriguez et al., 2017). The channels along main ravines have slopes that vary from 15° proximally up to a maximum of 4° in the more distal reaches. They are flanked by densely vegetated terraces, up to 15 m high in-average, that consist of debris avalanche and pyroclastic deposits from past eruptions (Figs. 2b and c) (Cortes et al., 2010; Roverato et al., 2011). Seven major watersheds from 2 to 14 km² feed the main ravines draining from the volcano on the southern side (Fig. 1). La Lumbre is the largest watershed, with a total area of 14 km², and Montegrande is *in average representative of* the other catchments, with an area of 2 km² (Fig. 1). Beside the difference in total area, the
Montegrande and La Lumbre watersheds are quite different in geometry. Montegrande catchment is elongated, with a maximum width of 800 m (300 m in average). In contrast, the proximal portion of the La Lumbre catchment includes all the entire NW slope of the cone, before elongating to then extent to a more elongated shape towards the SW, being up to 1500 m in width. These differences in area and shape can be correlated with a different water discharge response in water discharge under a rainfall event. In circular drainages, as i.e. the proximal portion of the La Lumbre watershed, all points are quite equidistant from the main river-channel so all the precipitation reaches the river at the same time, concentrating a large volume of water. In contrast, in a more elongate basin, lateral drainages quickly drain water into the main channel at different points but resulting in a lower total discharge. The Gravelius's index Kg (Gravelius, 1914; Bendjoudi and Hubert 2002), which is defined as the relation between the perimeter of the watershed (P) and that of a circle having a surface equal to that of a watershed (A):

\[Kg = \frac{P}{2\sqrt{\pi A}} \]

is here estimated for Montegrande watershed and for the upper, circular portion of La Lumbre watershed, obtaining values of 1.7 and 1.1 respectively. The lower the value, the more regular the basin’s perimeter and the more prone it is to present high runoff peaks. Based on these considerations, at La Lumbre watershed a larger volume of water concentrates along the main channel because of its larger surface and circular shape, but after a larger period of time relative to the Montegrande ravine, where a minor volume of water quickly reaches the main drainage.
2.2 Lahar Monitoring at Volcán de Colima

In 2007, a monitoring program was implemented at Volcán de Colima. At the beginning, initially, two rain gauges were installed to study lahar initiation (AR and PH sites, Figure 1) and lahar propagation was detected by using the broadband seismic stations of RESCO, the seismological network of Colima University (Davila et al., 2007; Zobin et al., 2009; Capra et al., 2010). Afterwards, two monitoring stations specifically designed for studying lahar activity were installed later, in 2011 at the Montegrande ravine and in 2013 at La Lumbre ravine (MSMg and MSL respectively, Figure 1). Both stations consist of a 12 m-high tower with a directional antenna transmitting data in real time to RESCO facilities, a camcorder recording images each 2-4 secs with a 704 x 480 pixel resolution, a rain gauge coupled with a soil moisture sensor, and a 10 Hz geophone (Vázquez et al., 2016a; Coviello et al., under revision). The rain gauge (HOBO RG3) records rain accumulation at one-minute intervals. At Montegrande ravine seismic data are also obtained from a 3 component Guralp CMG-6TD broadband seismometer installed at 500 m upstream from the monitoring site, sampling at 100 Hz (BB-RESCO, Figure 1).

The Montegrande station detected lahars occurred during the 2011 Jova and 2013 Manuel events, while lahars triggered during the 2015 Hurricane Patricia in 2015 were only recorded by La Lumbre station (Table 1). In fact, in 2011, only the MgMSMg site was operational (as the BB-RESCO station), and recorded the seismic signal of lahars associated with Jova and Manuel events. No images are available since both events occurred during the night. The LMSL station started to operate at the end of 2013 and was able to record the lahars associated with Hurricane Patricia along the La Lumbre ravine (images and geophone data). In contrast, in 2015 the MgMSMg site was
destroyed by pyroclastic flows during the 10-11 July explosive activity, and in October 2015 the new station (MSMg_2015) was still under construction. Only a few pictures were acquired and they are of low quality because of the abundant steam coming from the generated by hot lahars since they originated from the remobilization of fresh pyroclastic flow deposits (Capra et al., 2016). The 11 June 2013 event was perfectly captured by the camera installed at the MgMS Mg site and the BB-RESCO recorded its seismic signal.

The seismic signal is here analyzed to detect the arrival of main flow fronts and to estimate the discharge variation. For this, only the amplitude of the signal is considered, which can be correlated with the variation in the maximum peak flow discharge (Doyle et al., 2010; Vázquez et al., 2016a). In particular, for lahars at Volcán de Colima a correlation between the maximum peaks in amplitude and the maximum peak in flow discharge was found (Fig. 5 in Vázquez et al., 2016a). Fluctuation in seismic energy along the vertical component reflects variation in flow discharge.

The seismic record is here compared with the available images to identify the main changes in lahar dynamics of the detected lahars. All the lahars here analyzed correspond to multi-pulses events as classified by Vázquez et al. (2016a); they consist of long lasting lahars presenting several pulses, each characterized by a block-rich front followed by the main body and dilute tail showing continuous changes in flow discharges. A detailed seismic description of these types of lahar types at Volcán de Colima is available in Vázquez et al. (2016a); here we focus on the number of main flow peaks and their arrival times (Table 2).
2.3. The hydrometeorological events

Hurricane Jova formed over the Pacific Ocean, hit the Pacific coast on October 12, 2011, as a category 2 event, and traveled inland toward Volcán de Colima. The hurricane arrived as a tropical storm at the town of Coquimatlán, just 10 km SW of the city of Colima with winds of up to 140 km/hr, and 240 mm of rain over-falling over 24 hrs (Fig. 3a). Severe damage was registered in inhabited areas, including the city of Colima where floods damaged roads, bridges and buildings.

The 2013 Hurricane Manuel (category 1), hit the Pacific coast on 15 September 2013 during national holidays (Fiestas Patria) causing several damage to mountainous region in Guerrero state, triggering several landslides that caused up to 96 deaths and left several villages uncommunicated-cut off, as while thousands of tourists were trapped at Acapulco and Ixtapa international airports. At Volcán de Colima rains started on September 15 and lasted for more than 30 hrs with more than 300 mm of accumulated rains falling (Fig. 3a).

The 2015 Hurricane Patricia on 2015 was considered as the strongest hurricane on record to affect Mexico. The system starts-began to develop on 18 October over the Pacific Ocean, strengthened into a hurricane shortly after 00:00 GMT on 22 October and early on 23 October it reached its maximum category of 5, before losing strength as it moved onto the Sierra Madre Occidental range—But late on the same day, the system rapidly lost its strength. It-landfalls occurred around 23:00 GMT on 23 October along the coast of the Mexican state of Jalisco near Playa Cuixmala, about 60 km west-northwest of Manzanillo. On the morning of the 23 October, 2015 it continued to rapidly weaken as it moves on the
Sierra Madre Occidental high relieves. At Colima town, up to 400 mm of rains accumulated fall along on 30 hours since after the morning of 23 October (Fig. 3a). Lahars along the Montegrande ravine were hot since they originated from the erosion of pyroclastic flow deposits emplaced during the 10-11 July 2015 eruption. Severe damages affected the Colima town and areas the volcano surrounding the volcano. A bridge along the interstate was destroyed leaving uncommunicated cutting of La Becerra village and interrupting the traffic between Colima and Jalisco states.

2.3.1 Rainfall during hurricanes

Rainfall data were obtained from different rain gauge stations (Table 1 and Fig. 1). In particular, for the events studied at Montegrande ravine, rainfall data came from the rain gauge installed at SMMg while for the Patricia event, the more proximal available rain station is located at the top of the Nevado de Colima volcano (NS, Fig 1). It is worth mentioning that at Volcán de Colima, during stationary rainfall events associated to hurricane, no important differences in rainfall duration and intensity are detected at regional scale. For instance, the measured rainfall associated to Hurricane Jova was alike at two rain gauges located at more than 7 km of distance (MSMg and MSL) and during Hurricane Patricia same duration and intensity values were recorded by station NS and a station located in the Colima town, 30 km S from the volcano summit (Fig. 3ba). Patricia and Manuel rainfalls show a similar behavior, with a progressive rain accumulation along over 28-30 hrs; in contrast, during Hurricane Jova, 200 mm of rain accumulated fell in less than 15 hrs, with only another 40 mm reaching a total of 240 mm during the falling during the following 13 hrs (Fig. 3ba). These differences are more evident plotting the 10-min accumulated value normalized over the total accumulated rainfall (Fig. 3cb). Average
rainfall intensities calculated over a 10-min interval range from 32 mm/hr to 37 mm/hr for Manuel and Patricia events respectively and up to 43 mm/hr for the Hurricane Jova (Table 1). Finally rainfall values were calculated at selected time intervals (45-0.25m, 0.5, 45-0.75mm, 1, 3, 6, 12, 18, 24, 287 hr) to design possible storm rainfall distributions based on tropical rains associated with hurricanes recorded historically so far at Volcán de Colima Volcano (Table 2). Considering the similar behavior of the Manuel and Patricia rainfalls, a theoretical rainfall distribution curve a stormwater can be designed considering their average values (Fig. 3) (i.e. NRCS, 2008), based on which a forecast analysis can be performed, as will be discussed below.

2.4. Rainfall-Rainfall-runoff modelling simulations

To better understand the lahar behavior and duration during extreme hydrometeorological events at Volcán de Colima, rainfall-runoff simulations were performed with Flo-2D code (O’Brien et al., 1993). The Flo-2D code routes the overland flow as discretized shallow sheet flow using the Green-Ampt or the SCS Curve number (or combined) infiltration models. For the present work the SCS Curve Number (SCS-CN, i.e. Mishra and Singh, 2003) was selected for the analysis and a comparison between both infiltration models is presented below. The rainfall is applied to the entire watershed without spatial variability because we are dealing with large-scale, long duration hurricane-induced rainfall. This rainfall is discretized as a cumulative percent of the total precipitation each 10 minutes. With the SCS-CN model, the volume of water runoff produced for the simulated precipitation is estimated through a single parameter, i.e. the Curve Number.
This parameter, that summarizes the influence of both the superficial aspects and deep soil features, including the saturated hydraulic conductivity, type of land use, and humidity before the precipitation event (for an accurate description of the origin of the method see Rallison, 1980; Ponce and Hawkins, 1996). A similar approach was already previously used for modeling debris flow initiation mechanisms (i.e. Gentile et al., 2006; Llanes et al., 2015). To apply the SCS-CN model, it is necessary to classify the soil in one of four groups, each identifying a different potential runoff generation (A, B, C, D; USDA-NRCS 2007). The watershed of La Lumbre and Montegrande ravines were subdivided into two main zones: 1) the unvegetated upper cone and the main channel that consists of unconsolidated pyroclastic material with large boulders embedded in a sandy to silty matrix, and 2) the vegetated lateral terraces. Lateral terraces consist of old pyroclastic sequences, with incipient soils and are vegetated with pine trees and sparse bushes with soils that show a hydrophobic behavior at the beginning of the rain season (Capra et al., 2010). In situ infiltration tests were also performed based on which values of saturated conductivity were obtained in the range of 50 mm/h (nude soil) to 100 mm/h (vegetated) (Ortiz, 2017). Based on these observations, soils were classified between group A and B (Bartolini and Borselli, 2009). Curve Numbers-CN values for the vegetated terraces and for the nude soils were estimated in at 75 and 80 respectively (in wet season, Hawkins et al., 1985; Ferrer-Julia et al. 2003). To perform a simulation with the FLO-2D code, two polygons were traced to delimit the un-vegetated portion of the cone from the vegetated area of the watershed, and at each polygon the relative CN value was assigned. The simulated rain corresponds with the cumulative value calculated at 10 minutes interval (Fig. 3b). At the apex of each watershed a barrier of outflow points were defined to obtain the total values of the simulated watershed discharge computed at each 0.1 hr. The
simulation was performed with a 20-m digital elevation model. One of the limitations of the SCS method is that it does not consider the effect of the rainfall intensity on the infiltration. In addition, since no measurements of water discharge are available at both La Lumbre and Montegrande basins, it is difficult to calibrate the simulations here presented. To investigate the SCS-CN model uncertainties, the Green-Ampt (1911) model (G-A), sensitive to the rainfall intensity, was also applied and the results were compared with the outcome of the SCS-CN model. For the G-A method, the main input parameters are the saturated hydraulic conductivity (Ks), the soil suction and volumetric moisture deficiency. The Ks is a key factor in the estimation of infiltration rates and exerts a notable influence on runoff calculations, therefore requiring great care in its measurement (Grimaldi et al., 2013). The input values can be extrapolated from tables or directly measured with field experiments. Based on the textural characteristics of soils and type of vegetation at Volcán de Colima, input parameters were selected based on available tables in the Flo-2d PRO reference manual (Table 3). In particular, with a Ks value of 20 mm/hr the simulated watershed discharge best fits with the precursory shallow-water flow observed in the images, as it will be showed below (Figure 4). The Ks value of 20 mm/hr is equivalent to the CN value used for the SCS-NC simulations. In fact an empirical relation between Ks and CN has been proposed by Chong and Teng (1986):

\[S = 3.579K_{s}^{1.208} \]

where S is the potential retention related to the CN as follow (Mockus, 1972):

\[CN = \frac{2540}{S + 25.4} \]
Based on these equations a value of K_s equal to 20 mm/hr corresponds to a CN of 75.5 in the range of values here used for the SCS-NC infiltration model.

The G-A infiltration model was tested in La Lumbre ravine, using the Patricia event and comparing the simulated watershed discharge curve with the available video images. Figure 4 shows the discharge curve that best fits the data gathered from the images, based on which the two methods were qualitatively calibrated. The G-A infiltration method nicely reproduce the initial scouring of a muddy water corresponding with the first increase in the simulated watershed discharge. The SCS-CN infiltration model is not able to reproduce this first water runoff. This can be explained considering that the initial abstraction due to the interception, infiltration and surface storage, is automatically computed in the SCS-NC method as 0.2S, being probably too high for the studied area. In contrast, with the G-A method, the initial abstraction can be modified and best results were obtained with a value of 6 mm corresponding to a surface typical of a vegetated mountain region. However, both infiltration models give similar results for the main peaks of the simulated maximum watershed discharge that correspond to the arrival of the main lahar pulses observed in the images (Fig. 4). These results show that the G-A model is much more reliable to detect precursory slurry flows, while both models are equally able to catch the main surges of a lahar. One important point is that the simulations are here used to set up an EWS to forecast the lag time of the main lahar surges. The first slurry flows were important to calibrate the G-A simulation but they do not represent an essential data for the EWS. In addition, input data for the G-A method often are difficult to set, requiring great care in its measurement; in contrast, the output of the SCS-CN method only depend from the CN value. The SCS-CN method has been largely used in rainfall-runoff modeling, and we consider that it is a
valuable method for the objective of the present work, as we are not seeking a quantitative estimation of the watershed discharge but the arrival times of the main lahar pulses.

A sensitive analysis of the G-A input parameters presented in previous works (i.e. Chen et al., 2015) shows that the saturated hydraulic conductivity K_s is a key factor in the estimation of infiltration rates and exerts a notable influence on runoff calculations (i.e. Chen et al., 2015). With respect to the SCS-CN model, the only input parameter is the CN, thus we present a simple comparison for the Patricia event at La Lumbre ravine. Results obtained with the 80/75 CN values for channel and vegetated area respectively, are compared to two other simulations performed using global values of 75 and 80 (see Table 4). This exercise shows that the uncertainty in simulated maximum peak discharge is in the range of 0.1 hr, pointing that a global CN value could also be used for the Volcán de Colima.

3. Results

During the Hurricane Jova, lahars started at around 07:20 GMT (all times here after reported as GMT) in the Montegrande ravine early in the morning of 12 October, 2011, around 07:20 GMT (here after all time is in GMT), after approximately 40% of the total rain (240 mm) accumulated had fallen (Fig. 5a). The event lasted more than 4 hours, and three main peaks in amplitude can be detected in the seismic signal (Fig. 5a). In particular, the first two peaks are similar in amplitude (0.015 cm/s) and separated by more than 2 hours of signal fluctuation. After less than one hour after from the second
peak, a single, discrete pulse can be recognized (0.05 cm/s in amplitude), followed by a
“train” of low-amplitude seismic peaks that lasted for more than an hour.

Along the same ravine, an extreme event was recorded on 11 June, 2013—This event corresponds to an extraordinary episode and is here introduced to better discuss the hydrological response of the Montegrande ravine. It represents an unusual event at the beginning of the rainy season, considering the total accumulated rainfall of with 120 mm of rain falling in less than 3 hrs (Table 2), with and a maximum peak intensity of up to 140 mm/hr (Fig. 54b). Based on the seismic record and the still images of the event, this lahar was previously characterized as a multi-pulse flow, with three main block-rich fronts (I, II and IV, Fig. 54c), with similar amplitudes (0.015-0.025 cm/s), followed by a main flow body consisting of a homogenous mixture of water and sediments (with a sediment concentration at the transition between a debris flow and an hyperconcentrated flow) (III, Fig. 54c) (Vázquez et al. 2016a). The last, more energetic pulse (0.042 cm/s) was accompanied by a water-rich frontal surge that was able to reach the lens of the camera (IV, Fig. 54c). Comparing the Jova and the 2013 event For both Jova and 11 June 2013 events, seismic records it is possible to note that in both events, the largest pulse corresponds with the last one. Flow discharge was estimated for the 11 June 2013 event, with a maximum value of 120 m3/s value for the largest pulses (IV, Figure 54b) (Vázquez et al., 2016a). For the Jova event, the only visual data available are the images of the channel the day before and the day after the event, where a deep erosion of the channel is visible (Fig. 65). Comparing its seismic signal with the 11 June 2013 lahar, and based on the classification criterion established for lahars at Volcán de Colima (Vázquez et al., 2016a) each main peak is inferred to corresponds to the arrival of a flow surges or to block-rich fronts.
followed by the body of the flow. Fluctuation in seismic energy along the vertical component reflects variation in flow discharge.

The lahar recorded during the Hurricane Manuel along the Montegrande ravine shows a similar behavior as to that described for the Jova event (Fig. 7). As the event occurred during the night no images are available. Based on the seismic record from the BB-RESCO, lahars started around at 03:00, and lasted for seven hours. The event was characterized by five main pulses, whose amplitude increases with time (0.012-0.025 cm/s), being with the last being one the largest in magnitude (0.04 cm/s). Based on the amplitude values, the first two peaks correspond to precursory dilute flow waves followed by the three main pulses with block-rich fronts (I, II and III, Fig 7).

In the case of the Hurricane Patricia, seismic data (from the geophone) and still images were recorded at the La Lumbre monitoring station. Based on these data, at approximately c. 16:25 a slurry flow is detected on the main channel (Fig. 47). First pulses of hyperconcentrated flows were detected around 01:30 (24 October) which progressively increased in flow discharge and sediment concentration. The initial water flow rapidly evolves in a hyperconcentrated flow (Coviello et al., under revision) and several front waves were observed during flooding (I and II, Fig. 8b) for which an average flow discharge of 80-100 m³/sec was estimated, and two main pulses arrived at 23:40:30 and 00:45:00 (24 October), with 6 m-depth block-rich fronts and maximum flow discharges of 900 m³/sec (III, IV, V and VI, Fig. 8b). At around 05:00:40 the seismic record detected the arrival of a third pulse. Although no images were available, the amplitude of the last pulse (0.07 cm/s) suggests it was larger than those previously
described. As observed for the three previous events recorded at Montegrande ravine, the largest pulse again corresponded again with to the last one.

The results of rainfall simulations—the rainfall-runoff simulation are are plotted as a normalized curve of the total runoff hydrograph (watershed discharge), along with the normalized accumulated rainfall and its intensity (calculated over a 10-min interval) (Fig. 98). In the same plot, the arrival time of the main lahar pulses here analyzed is also indicated (red triangles, Fig. 89). By comparing the simulated watershed discharge with rainfall intensity, a general correlation can be observed for the Montegrande basin during hurricanes Jova and Manuel hurricanes (Fig. 9a and b), contrasting with the 11 June 2013 event (Fig. 9c), where the simulation is not able to reproduce watershed discharge during the first minutes of the event when most of rainfall is accumulated and maximum rainfall intensities are detected.

For la Lumbre watershed a clear correlation between peak intensities and watershed discharge is not clearly observable. If the arrival times of the main lahar s—pulses are considered, the events associated to the hurricanes Jova and Manuel along the Montegrande ravine show a similar behavior. In both cases, early slurry flows are detected after ~40% of the total rain is accumulated. The main flow pulses better correlate with the highest rain intensity values, which also correspond with maximum peaks in simulated watershed discharge; the last, largest pulse corresponds with the maximum simulated peak discharge of the watershed. Finally, analyzing the simulation in the Montegrande ravine for the 11 June 2013 event, it is possible to observe a different behavior. The lahar starts as less than the 10% of rain is accumulated, and the main lahar pulses perfectly correlate with the peak
rainfall intensities, and only the last largest pulse correlates with the watershed peak discharge.

- For La Lumbre watershed in 2015, a clear correlation between peak rainfall intensities and simulated watershed discharge is not observable. In contrast, for the Patricia event, along the La Lumbre ravine, first slurry flows (pulse I, Fig. 7b) also start after 40% of total rainfall accumulated, but main lahar pulses fit better with the simulated peaks watershed discharge (Fig. 9d). Finally, analyzing the simulation in the Montegrande ravine for the June 2013 event, it is possible to observe a different behavior. The lahar starts as less than the 10% of rain is accumulated, and the main lahar pulse perfectly correlates with the peak rainfall intensities, and only the last largest pulse correlates with the watershed peak discharge.

4. Discussion

At present, several attempts have been made to define lahar initiation rainfall thresholds have been already carried out for different volcanoes (i.e. Lavigne et al., 2000; van Westen and Daag, 2005; Barclay et al., 2007; Jones et al., 2015; Jones et al., 2017), including Volcán de Colima (Capra et al., 2010). This study focused on is mostly addressed to-better prediction of the lahar evolution during extraordinary hydrometeorological events such as hurricanes, a common long-duration and large-scale rainfall phenomenon at-in tropical latitudes. In particular, we are interested in predicting the arrival of block-rich flow fronts that have caused severe damages during past events. Based on the seismic and visual data gathered from the events here-analyzed here, it is possible to identify evidence
which are the key factors in controlling the arrival timing of main lahars fronts. For the Jova, Manuel and Patricia events, lahars started after the 40% of total rain had accumulated (corresponding to c. 100, 120 and 160 mm of rain respectively), and apparently the timing for the initial main pulses correlates well with the peaks of the rainfall intensity for the Montegrande ravine, while for La Lumbre ravine they better match with the peaks of the simulated watershed discharge. Nevertheless for all analyzed cases, the largest pulses correspond with the last ones and correlate with the peak watershed discharge for all the analyzed examples. The observed differences between Montegrande and La Lumbre ravines can be correlated with the different areas and shapes of the two catchments. In fact, due to its elongated shape (\(K_G = 1.7\)) and small area (\(A = 2 \text{ km}^2\)), the Montegrande watershed shows a quicker response between rainfall and discharge, with a rapid water runoff that concentrated at different point along the main channel (Fig. 1b). This behavior is much clearer for the 11 June 2013 event, which occurred at the beginning of the rain season when soils on the lateral terraces of the ravines show a hydrophobic behavior (Capra et al., 2010). The simulation was not able to reproduce any watershed discharge at the beginning of the event, because the hydrophobic behavior of the soils inhibits the infiltration and the water runoff quickly promotes lahar initiation. During this event, the first lahar pulses perfectly match with the rainfall peak intensities (except for the last major pulse), starting from the very beginning of the rainfall event. In contrast, La Lumbre ravine has a wider, rounded upper watershed (\(K_G = 1.1; A = 14 \text{ km}^2\)) that is able to concentrated a larger volume of water before to turn SW entering the main channel where lateral contributions can still increase water discharge further. Even if rainfalls-rain during of hurricanes Manuel and Patricia showed a similar behavior (Fig. 3), the catchment response of La Lumbre is clearly different with a pulsating behavior of lahars mainly...
controlled by the watershed discharge. Nevertheless, for all the events here analyzed, the largest pulse corresponds with the last one recorded and it correlates with the maximum simulated watershed discharge, pointing to a strong control of the catchments recharge in generating the largest and more destructive pulses. Previous works correlated the occurrence of surges within a lahar to multiple sources, such as lateral tributaries along the main channel (i.e. Doyle et al., 2010) or due to the failure of temporary dams of large clasts in correspondence triggered by of an increase in rainfall intensity (Kean et al., 2013).

Lateral tributaries are absent in both the Montegrande and La Lumbre channels and, even if an accumulation of clasts it is were -possible, no significant discontinuities of the channel bed can be observed upstream of the monitoring sites. Based on data presented here presented, formation of pulses within a lahar is mostly controlled with by the watershed shape the increase in water runoff that at a critical discharge rate mobilize a large volume of sediment where large clasts accumulate at its front. This is a well-documented mechanism (i.e. Iverson, 1997), but based on the model here proposed, the discharge rate is controlled by the watershed discharge—that regulates the timing on of the arrival of main pulses, depending on the rainfall behavior and the watershed shape. Nevertheless, the last pulse always is always the largest in volume.

This model is strictly related to to migratory, long-duration and large-scale rainfall events hitting tropical volcanoes such as the Volcán de Colima. In fact In contrast, during mesoscale non-stationary rainfalls, typical at the beginning of the rainy season, lahars are usually triggered at low accumulated rainfall values and controlled by rainfall intensity due to the hydrophobic behavior of soils, and they usually consist of single -pulse events with a single -one block-rich front that last less than one hour (i.e. Vázquez et al., 2016b). In
perspective, the results presented here can be used to design an Early Warning System (EWS) for hurricane-induced lahars, i.e. event triggered by long-duration and large-scale rainfalls. Most common pre-event or advance-EWSs for debris flows are based on empirical correlations between rainfall and debris flow occurrence (e.g., Keefer et al., 1987; Aleotti, 2004; Baum and Godt, 2009; Jones et al., 2017; Wei et al., this volume; Greco and Pagano, this volume). The instruments adopted for debris-flow advance warning are those normally used for hydrometeorological monitoring and consist of telemetry networks of rain gauges and/or weather radar. The typical way to represent these relations is identifying critical rainfall thresholds for debris flow occurrence. The availability of both a large catalogue of events and a reliable precipitation forecast that could give the predicted amount of rainfall some hours in advance would allow the issue of an effective warning, at least in predicting the likely arrival time of the main lahar pulses. In addition, instrumental monitoring of in-channel processes can be used to validate a preliminary warning-condition triggered by weather forecast and/or rainfall measurements.

5. Conclusions

Real-time monitoring data from long-lasting lahars triggered by Hurricane Jova, Maueln and Patricia at Volcán de Colima volcanoes reveal that watershed discharge is the key factor in controlling the arrival time of main block-rich fronts during long-lasting lahar triggered during tropical storms, and that the largest destructive pulses will arrive after the initial surging. In particular, for the 2015 Hurricane Patricia event, the weather forecast predicted an estimated value for the total rainfall, as also the
approximate time of its landfall, the day before the event. Based on the designed storm obtained with the time-rainfall/time-distribution of the event analyzed it could have been possible to anticipate when lahars started along the La Lumbe ravine, and the arrival time of main pulses. This first rough prediction of the arrival times of main lahar pulses could have been validated and updated based on real time data acquisition and rainfall-runoff simulations that do not take more than 30 minutes to provide results. Along the other ravines, that show a watershed similar to the Montegrande, it could have been possible to predict the arrival of at least the largest pulse. This information coupled with the real time monitoring could be a better valuable tool to employ for hazard assessment and risk mitigation. In fact, these findings can be used to implement an advance-EWS—warning system based on the monitoring of a hydrometeorological process to issue a warning before a possible lahar is triggered.

Acknowledgements.

This work was supported by CONACyT projects 230 and 220786 granted to Lucia Capra and by the postdoctoral fellowship of DGAPA (Programa de Becas Posdoctorales de la UNAM) granted to Velio Coviello. Thanks to José Luis Ortiz and Sergio Rodríguez, from the Centro de Prevención de Desastres (CENAPRED), who set up the instrumentation on the Montegrande monitoring site.

References

Lavigne F, Thouret JC (2002) Sediment transport and deposition by rain-triggered lahars at

Scenario-based maps using flo-2d and IFSAR-derived digital elevation models on the
November 2006 rainfall-induced lahars, Mayon Volcano, Philippines. ACRS 2015
Proceedings, Asian Association on Remote Sensing.

Moscardaro Torrent (Italian Alps), Geomorphology 46: 1–17, doi:10.1016/S0169-
555X(01)00162-3.

Mishra S K, Singh VP (2003) Soil conservation service curve number (SCS-CN)

Mockus V (1972) Estimation of direct runoff from storm rainfall national engineering
handbook, Soil Conservation Service, Washington, DC.

Wei L-W, Huang C-M, Lee C-T, Chi C-C, Chiu C-L (2017) Adopting I$_3$–R$_{24}$ rainfall index and landslide susceptibility on the establishment of early warning model for rainfall-

Figure captions

Figure 1. a) Aster image (4, 5 and 7 bands in RGB combination) where main watersheds at Volcán de Colima are represented. The locations of the monitoring stations are indicated. The inset shows the location of the rain gauge of the Meteorological National Service at the summit of the Nevado de Colima Volcano. b) Sketch map of the Trans Mexican Volcanic Belt (TMVB) and the Volcán de Colima location. Black triangles denote the main active volcanoes in México.

Figure 2. a) Panoramic view of the Volcán de Colima showing the unvegetated main cone mostly composed by loose volcanic fragments. b) Montegrande and c) La Lumbre ravines in the middle reach where it is possible to observe the main channel flanked by 10-15m-high terraces mainly constituted by debris avalanche deposits.

Figure 3. a) Cumulative values of rainfall of hurricanes Jova, Manuel and Patricia calculated at 10 min-intervals; ab) Normalized rainfall curves for the Jova and Patricia events as gathered from two different stations, pointing to a quasi-stationary rainfall behavior; ab) Cumulative and cb) normalized values of cumulative rainfall curves of rainfall of hurricanes Jova, Manuel and Patricia calculated at 10 min-intervals. dc) Normalized curve of total rainfalls cumulated at 15, 30, 60 minutes and 1, 3, 6, 12, 18, 24, 28 hrs. Dotted line represents the average value between Manuel and Patricia hurricanes.

Figure 4. Comparison of simulated watershed discharge curves based on SCS-NC and G-A infiltration models. Qualitative calibration is here proposed based on the flow discharge as observed in the video images captured at the MSL site.
Figure 54. a) Seismic record of the lahar triggered during the Hurricane Jova, on 12 October, 2011. b) Seismic record of the lahar triggered during the 11 June, 2013 events. Main pulses are indicated with roman letters. c) Images captures by the camera corresponding to the main lahar pulses as indicated in figure b.

Figure 65. Images showing the morphology of the channel at the monitoring site of the Montegrande ravine, a) the day before and b) the day after the Hurricane Jova—c). Topographic profiles showing that the channel was eroded 1.5 m in depth.

Figure 76. Seismic record of the lahar triggered during the Hurricane Manuel, on 15 September, 2013, recorded along the Montegrande ravine

Figure 82. a) Seismic record of the lahar triggered during the Hurricane Patricia, on 26 October, 2015, recorded along the La Lumbre ravine. Main lahar pulses are indicated with roman letters. b) Images captured by the camera corresponding to the main pulses as indicated in figure a.

Figure 98. Diagrams showing the main lahar pulses (red triangles) as detected from the seismic signal of the analyzed events in relation with the accumulated rainfall (dark line), rainfall intensity (10m/hr) (gray line) and simulated watershed discharge (blue line) for the following hidrometeorological events a) Jova; b) Manuel; c) 13 June, 2013; and d) Patricia.

Table 1. Data collected for the events here studied.

Table 2. Normalized accumulated rains (in percentage) at progressive time steps.

Table 3. Parameters used in the G-A simulations
Table 4. Arrival times of peak III and IV using different CN values.
Table 1. Data collected for the events here studied.

<table>
<thead>
<tr>
<th>Event</th>
<th>Ravine</th>
<th>Seismic record</th>
<th>Image record</th>
<th>Rain gauge</th>
<th>Total rain (mm)</th>
<th>Max. rain intensity (mm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jova, 124/10/2011</td>
<td>Montegrande</td>
<td>X</td>
<td></td>
<td>MSMg</td>
<td>240</td>
<td>43</td>
</tr>
<tr>
<td>Manuel, 15/09/2013</td>
<td>Montegrande</td>
<td>X</td>
<td></td>
<td>MSMg</td>
<td>300</td>
<td>32</td>
</tr>
<tr>
<td>Patricia, 23/10/2015</td>
<td>Lumbre</td>
<td>X</td>
<td>X</td>
<td>NS</td>
<td>400</td>
<td>37</td>
</tr>
<tr>
<td>11 June 2013</td>
<td>Montegrande</td>
<td>X</td>
<td>X</td>
<td>MSMg</td>
<td>120</td>
<td>140</td>
</tr>
</tbody>
</table>
Table 2. Normalized accumulated rains (in percentage) at progressive time steps.

<table>
<thead>
<tr>
<th>Event/time (hrs)</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>24</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jova</td>
<td>0.0011</td>
<td>0.0016</td>
<td>0.0035</td>
<td>0.0172</td>
<td>0.0329</td>
<td>0.1411</td>
<td>0.7073</td>
<td>0.968</td>
<td>0.9943</td>
</tr>
<tr>
<td>Manuel</td>
<td>0.0023</td>
<td>0.0035</td>
<td>0.0042</td>
<td>0.0072</td>
<td>0.0151</td>
<td>0.0341</td>
<td>0.1548</td>
<td>0.735</td>
<td>0.9181</td>
</tr>
<tr>
<td>Patricia</td>
<td>0.0002</td>
<td>0.0004</td>
<td>0.0009</td>
<td>0.0062</td>
<td>0.0174</td>
<td>0.0556</td>
<td>0.2544</td>
<td>0.829</td>
<td>0.9782</td>
</tr>
<tr>
<td>Average</td>
<td>0.00125</td>
<td>0.00195</td>
<td>0.00255</td>
<td>0.0067</td>
<td>0.01625</td>
<td>0.04485</td>
<td>0.2046</td>
<td>0.782</td>
<td>0.9481</td>
</tr>
</tbody>
</table>

The average values refer to hurricanes Manuel and Patricia.
Table 3. Parameters used in the G-A simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstraction</td>
<td>6 mm</td>
</tr>
<tr>
<td>Ks</td>
<td>20 mm/hr</td>
</tr>
<tr>
<td>soil-suction</td>
<td>100 mm</td>
</tr>
<tr>
<td>initial saturation</td>
<td>0.1</td>
</tr>
<tr>
<td>final saturation</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Table 4. Arrival times of peak III and IV using different CN values.

<table>
<thead>
<tr>
<th>Surges observed in the images</th>
<th>peak III (23.5 hr)</th>
<th>peak IV (24 hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>Arrival times (hr) in the simulated watershed discharge curves</td>
<td></td>
</tr>
<tr>
<td>75 global</td>
<td>23.4</td>
<td>24.1</td>
</tr>
<tr>
<td>80/75 (channel/vegetated)</td>
<td>23.5</td>
<td>24.1</td>
</tr>
<tr>
<td>80 global</td>
<td>23.5</td>
<td>24.2</td>
</tr>
</tbody>
</table>
Fig. 01
Fig. 054

(a) Jova, 12/10/2011

(b) Montegrande, 11/06/2013

(c) Images (I, II, III, IV)
Manuel, 16/09/2013

Envelope (cm/s)

Time (HH:MM)

02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00

I

II

III
Fig. 087

Patricia, 23/10/2015

III/IV

night

V/VI

Time (HH:MM)

Envelope (cm/s)

b

I

II

III

IV

V

VI