Re: (nhess-2017-336) Assessment of peak tsunami amplitude associated with a great earthquake occurring along the southernmost Ryukyu subduction zone for Taiwan region by Yu-Sheng Sun, Po-Fei Chen, Chien-Chih Chen, Ya-Ting Lee, Kuo-Fong Ma, and Tso-Ren Wu

Dear Prof. Lionello,

Thank you for reviewing this paper. We have made the revision to our manuscript intensively and reply the comments from reviewers carefully for your further consideration on the publication in Natural Hazards and Earth System Sciences (NHESS).

The authors highly appreciate the support of publication in NHESS from the reviewers and their helpful suggestion as well. We have made substantive modifications according to their suggestion and the English editing by Springer Nature. The annotated responses to the reviewers’ comments and the details about our changes in the revised version of our manuscript are made accordingly in the files. Attached please also find the electronic files of the revised manuscript for your further consideration of publication in NHESS. In the revised version, all modifications were marked in red for your reference. Any problem raised please let me know. Thank you very much.

With Best Regards,

Yu-Sheng Sun
Nature Research Editing Service Certification

This document certifies that the manuscript listed below was edited for proper English language, grammar, punctuation, spelling, and overall style by one or more of the highly qualified native English speaking editors at American Journal Experts.

This certificate may be verified at www.aje.com/certificate. This document certifies that the manuscript listed above was edited for proper English language, grammar, punctuation, spelling, and overall style by one or more of the highly qualified native English speaking editors at American Journal Experts. Neither the research content nor the authors' intentions were altered in any way during the editing process. Documents receiving this certification should be English-ready for publication; however, the author has the ability to accept or reject our suggestions and changes. To verify the final AJE edited version, please visit our verification page. If you have any questions or concerns about this edited document, please contact American Journal Experts at support@aje.com.

Manuscript title: Assessment of peak tsunami amplitude associated with a great earthquake occurring along the southernmost Ryukyu subduction zone for Taiwan region

Authors: Yu-Sheng Sun, Po-Fei Chen, Chien-Chih Chen, Ya-Ting Lee, Kuo-Fong Ma, Tso-Ren Wu

Key: 9C78-0668-60FF-F9C0-81B7

This certificate may be verified at secure.authorervices.springernature.com/certificate/verify.

American Journal Experts provides a range of editing, translation and manuscript services for researchers and publishers around the world. Our top-quality PhD editors are all native English speakers from America’s top universities. Our editors come from nearly every research field and possess the highest qualifications to edit research manuscripts written by non-native English speakers. For more information about our company, services and partner discounts, please visit www.aje.com.
Response (in black) to the comments of Reviewers (in blue)

Reviewer #1:

In Table 1, if at hand please add the water depth at the tide gauges as they appear in the computational mesh. This value is needed to reproduce the results.
We have added the values of water depth in Table 1. [Pages 26-27]

Reviewer #2:

Page 1, Abstract, line 9. I suggest to change, "tsunami earthquakes" by "tsunamigenic earthquakes", to avoid any confusion with the "tsunami-earthquake" itself. I assume authors refer to any kind of earthquake that generates a tsunami (e.g. regular earthquakes, tsunami-earthquakes, etc.).
We have done it. [Page 1, line 12]

Page 3, line 16. Please, insert "vary" after (Delta_sigma).
We have done it. [Page 4, line 2]

Page 3, line 21. Change "is" by "are".
We have done it. [Page 4, line 7]

Page 3, line 22. I suggest to change "a definite" by "the assumed".
We have done it. [Page 4, line 8]

Page 3, line 27. I think a word is missing in the sentence "..can be transformed magnitude Mw", so, I will suggest, "...can be transformed to magnitude Mw".
Thank you. We have done it. [Page 4, lines 14-15]
According to the suggestion of English editing, it was written “...can be transformed into the magnitude \(M_w \)”.

Page 4, line 2. Please, insert the physical unit in the value of \(M_0 \), I guess it is [dyne-cm].
We have done it. [Page 4, line 17]

Page 4, line 6. For better description, complete the word "temporal" by "spatio-temporal".
We have done it. [Page 4, line 21]
Page 4, line 13. I suggest to insert "The" before "k-2".
We have done it. [Page 5, line 2]

Page 4, line 15. For a better reading, I will suggest to change "self-similar introducing the...", "self similarity introduced the...".
We have done it. [Page 5, lines 3-4]
According to the suggestion of English editing, we modified the sentence.

Page 4, line 20. I think instead of "convolution in the Fourier domain" it should be, "multiplication in the Fourier domain", because the 2D Fourier spectrum of the random realization of slip is multiplied by k-2 in the Fourier domain beyond some characteristic wavelength.
We have done it. [Page 5, line 9]
In Lavallée and Archuleta, (2003) and Lavallée et al. (2006), they both used “convolution” to describe this calculation, but we agree that using multiplication is more appropriate.

Page 4, line 25. I suggest to replace "4" by "four".
We have done it. [Page 5, line 14]

Page 5, line 6. The "convoluting" operation is not correct. I will suggest to write something like, "by imposing a self-similar characteristic...".
We have done it. [Page 5, lines 24-25]

Page 5, line 8. Correct "gird" by "grid".
We have done it. [Page 5, lines 26-27]

Page 5, line 10. I will suggest to insert "shown in" before "Figure 1a".
We have done it. [Page 5, line 29]

Page 5, line 13. To complete the idea, I suggest to insert "faulting" before "mechanism".
We have done it. [Page 6, line 3]

Page 5, line 13-14. I think the sentence "In addition, the inversed slip distribution in study region is lack to do the analysis of Levy PDF" could be better executed. For instance, "There are not inverted slip models of past earthquakes in the study area to do the analysis of Levy PDF parameters.", or something like that.
We have done it. [Page 6, lines 4-5]
Page 5, line 23. I will suggest to insert "the plate interface" before "..is locked..".
We have done it. [Page 6, line 17]

Page 5, line 24. To complete the idea, I suggest to add "over the whole fault plane" after "...uniform slip distribution.".
We have done it. [Page 6, lines 21-22]

Page 7, line 27. Please, provide physical units to 1.024, m ?
We have done it. [Page 8, line 30]

Page 9, line 5. It is just a suggestion, but to better precise the idea, I suggest to modify the phrase "...is parallel the subduction zone.." by "..is parallel to the trench axis of the subduction zone", or something like that.
We have done it. [Page 10, lines 21-22]

Page 9, line 6. Insert "along" before "these".
We have done it. [Page 10, line 26]

Page 9, Paragraph 2 and 3. To help the reader, I suggest to label the four NPPs (Nuclear Power Plants) in Figure 5, map on the right. The NPPs are labeled in Figure 2, but because authors discuss the NPP3, NPP2, etc, with respect to the PTA at different locations along the coast of Taiwan in Figure 5 again, it will be useful to see the label of each NPP in this figure.
We have done it. [Page 24]

Page 9, line 6. Wildest ?, or should it be "widest" ?. Please, clarify.
We have done it. [Page 13, line 6]
Thank you. I find this word on page 11, the section of Conclusion.

Page 9, line 7. Please, provide physical units to 1.63, m ?.
We have done it. [Page 13, line 7]

Figures

Figure 2. I will suggest to complement "(5x5 km2)", by "(5x5 km2 grid size)".
We have done it. [Page 19, line 5]
Figure 5. See my comments above (Page 9, Paragraph 2 and 3). It will be useful to label each NPP in the map on the right. Please, describe a little bit the map on the right in the caption. For instance, "Map of Taiwan with station locations and four NPP (yellow squares)."

We have done it. [Page 24]

p.s.
Figure 1.
We have changed “Fit;” to “fit”.

Figure 2.
We modified the resolution.

Figure 4.
We changed “hour” to “hours” for x-label.

Figure 6.
We changed “hight” to “height” for y-label.
Assessment of the peak tsunami amplitude associated with a great earthquake occurring along the southernmost Ryukyu subduction zone in the region of Taiwan region

Yu-Sheng Sun¹, Po-Fei Chen¹, Chien-Chih Chen¹,² Ya-Ting Lee¹,² Kuo-Fong Ma¹,² and Tso-Ren Wu²,³

¹Department of Earth Sciences, National Central University, Taoyuan City 32001, Taiwan, R.O.C.
²Graduate Earthquake-Disaster & Risk Evaluation and Management Center, National Central University, Taoyuan City 32001, Taiwan, R.O.C.
³Graduate Institute of Hydrological and Oceanic Sciences, National Central University, Taoyuan City 32001, Taiwan, R.O.C.

Correspondence to: Yu-Sheng Sun (shengfantasy@gmail.com)

Abstract. The southernmost portion of the Ryukyu Trench is a potential region to generate 7.5 to 8.7 tsunami potential by with magnitudes from 7.5 to 8.7 through shallow rupture. The fault model for this potential region dips 10° northward with a rupture length of 120 km and a width of 70 km. The earthquake magnitude of Mw 8.15 is estimated by the fault geometry is Mw 8.15 with an average slip of 8.25 m as a constraint on the earthquake scenario. The heterogeneous slip distributions over the rupture surface are generated by a stochastic slip model, which represents that the slip spectrum decays according to k⁻² in the wavenumber domain, and they. These synthetic slip distributions are consistent with the above mentioned identical seismic conditions. The results from tsunami simulations illustrate that the propagation of tsunami waves and the peak wave heights largely vary in response to the slip distribution. The changes in the wave phase are possible as the waves propagate, even under the same seismic conditions. The tsunami energy path is not only following the bathymetry but also depending on the slip distribution. The probabilistic distributions of the peak tsunami amplitude calculated by 100 different slip patterns from 30 recording stations reveal that the uncertainty decreases with increasing distance from the tsunami source. The highest wave amplitude for 30 recording points is 7.32 m at Hualien for 100 different slips. Comparing with the stochastic slip distributions, the uniform slip distribution will be extremely underestimated, especially in the near field. In general, the uniform slip assumption only represents the average phenomenon and will consequently ignore the possibility of tsunami waves. These results indicate that considering the effects of heterogeneous slip distributions is necessary for assessing tsunami hazard and that to provide more additional information about tsunami uncertainty and facilitate a more comprehensive estimation.
1 Introduction

Almost all destructive tsunamis are generated by shallow earthquakes that occur at within subduction zone. There were recently zones. Numerous destructive tsunami events, including the 2004, Mw 9.1, Sumatra earthquake in 2004 (Lay et al., 2005), the 2010, Mw 8.8, Chile earthquake in 2010 (Lay et al., 2010; Fritz et al., 2011) and the 2011, Mw 9.0, Tohoku earthquake in 2011 (Goda et al., 2015; Goda and Song, 2016), all of them which occurred at in subduction zones, have occurred recently. The island of Taiwan, which is located at the convergent boundary between the Philippine Sea Plate and the Eurasian Plate is possibly threatened from, is constantly under the possible threat of a tsunami. The convergence rate in this area is approximately 80-85 mm/yr (Seno et al., 1993; Yu et al., 1997; Sella et al., 2002; Hsu et al., 2009; Hsu et al., 2012). Thus, earthquakes occur frequently in and around Taiwan. The shallow earthquakes that occur in the Manila Trench to the south and the Ryukyu Trench to the northeast are particularly tsunamigenic. Also, the and earthquakes in occur more actively in the southernmost Ryukyu Trench is more active than north in the northern Manila Trench (Wu et al., 2013). The most well-known historic tsunami events that have occurred in northeastern Taiwan are the 1867 Keelung earthquake (Mw 7.0) (Tsai, 1985; Ma and Lee, 1997; Cheng et al., 2016; Yu et al., 2016) and the 1771 Yaeyama (Japan) earthquake (Mw~8) (Nakamura, 2009a). Accordingly, these historic recordings demonstrate that Taiwan island has the potential of tsunami threat. Furthermore, the 2011 Tohoku earthquake induced a powerful tsunami that destroyed coastal areas and caused nuclear accidents (Mimura et al., 2011). There are four nuclear power plants along the coast of Taiwan, so it is necessary to carefully estimate the tsunami hazard and in addition the hazards of compound disasters.

Probabilistic tsunami hazard analysis (PTHA) is a modification of probabilistic seismic hazard analysis (PSHA) (Cornell, 1968; SSHAC, 1997), and it is intended to forecast as comprehensively as possible the probability of tsunami hazards for a given region. Considering tsunamis triggered by earthquakes, the as comprehensively as possible. The recurrence rates of earthquakes have typically been estimated using the Gutenberg–Richter relationship (Gutenberg and Richter, 1944) for a defined source region. In consideration of tsunamis triggered by earthquakes. The assessment of the wave height is one of the primary differences between PTHA and PSHA. PSHA assesses the ground motion based on empirical attenuation relationships (Wang et al., 2016), while PTHA assesses tsunami wave heights using empirical approaches or tsunami simulations (Geist, 2002; Geist and Parsons, 2006; Geist and Parsons, 2009). Geist and Parsons (2006) mentioned that the tsunami wave height follows a definable frequency-size distribution over a sufficiently long amount period of time at within a given coastal region (Soloviev, 1969; Houston et al., 1977; Horikawa and Shuto, 1983; Burroughs and Tebbens, 2005). This method is of great use in establishing the tsunami probability for a region if there is an extensive catalog of observed tsunami wave heights. Given the wide distribution of global tsunamigenic earthquakes within seafloor regions throughout subduction zones, the tsunami records obtained from coastal gauges or/and ocean buoys are too sparse to comprehensively assess the associated hazards, comprehensively, and the recording time since their deployment is
too short to enable a study of the recurrence intervals of tsunamis/earthquakes. Consequently, because the existing tsunami catalogue is limited, the simulation is an effective approach. Conventional tsunami simulation adopts a simple source approximation and applies elastic dislocation theory to calculate the deformation of the seafloor surface assuming a uniform slip over the entire fault surface (Okada, 1985; Okal, 1982). However, the complexity of earthquake ruptures plays a substantial role in tsunami generation. Conventional tsunami simulation adopts a simple source approximation and applies elastic dislocation theory to calculate the deformation of the seafloor surface assuming a uniform slip over the entire fault surface (Okada, 1985; Okal, 1982). However, the complexity of earthquake ruptures plays a substantial role in tsunami generation. Conventional approaches are therefore unable to capture various features of short-wavelength tsunamis in the near field (Geist, 2002; Geist and Parsons, 2009). Previous studies that simulate tsunamis originating from historical earthquakes around Taiwan (Ma and Lee, 1997; Wu et al., 2008) using uniform slip models agreed only with long-wavelength observations. For the purposes of hazard mitigation, it is critical that the amplitudes of tsunamis are predicted along various coastlines for a given earthquake as accurately as possible. To make such predictions, the effects of the rupture complexity must be taken into consideration. Recent developments in PTHA have included the adoption of stochastic slip distributions of earthquakes to determine the overall probability of particular tsunami heights (Geist and Parsons, 2006, 2009). That method can be used to quantify the variations in reasonable estimation in evaluating the probability of specified tsunami heights at individual locations that result from a specific fault.

In this study, we assess tsunami heights of tsunamis along the coastline of Taiwan that is caused by the potential tsunami-generating zone at the southernmost end of the Ryukyu subduction zone. This potential zone is located close to Taiwan, and at least ten earthquakes ($M_w > 7$) have occurred over the past 100 years (Hsu et al., 2012). The largest one was the Mw 7.7 in 1920 (Theunissen et al., 2010). For this area, the plausible magnitude of greatest earthquake was determined to be within the range between 7.5 and 8.7 (M_w) (Hsu et al., 2012). The fault zone is bounded by the Longitudinal Valley Fault to the west and the Gagua Ridge to the east (Hsu et al., 2012). This defined fault geometry with a defined rupture length and width was employed herein, and an earthquake with a magnitude of 8.15 is used in the tsunami simulation. The stochastic slip model is invoked to describe the uncertainty in the rupture pattern over the fault plane to enable a more realistic assessment of the tsunami probability.

2 Great earthquake scenario and tsunami simulation

2.1 Assessment of Seismic Parameters

The magnitude of the maximum possible earthquake scenario is essential for establishing the fundamental seismic conditions of the tsunami simulation. This scenario, of a potential rupture fault, extending to a depth of 13 km proposed by Hsu et al. (2012) occurs along the southernmost Ryukyu trench with a rupture length of 120
km, a width of 70 km and a dip of 10° and extends to a depth of 13 km. Kanamori and Anderson (1975) investigated the relation between the rupture area and moment, which revealed that the most of the average stress drops (Δσ) vary between 10 to 100 bars. The average stress drop for the most interplate earthquakes are around 30 bars. According to the stress drop and seismic moment (M0) relations in relation along a dip slip faults is described as follows (Kanamori and Anderson, 1975):

\[M_0 = \frac{\pi(\lambda+2\mu)}{4(\lambda+\mu)} \Delta\sigma W^2 L \]

where W and L are the width and length of the rupture plane, respectively. We can obtain the moment for this scenario under the average stress drop of 30 bars and with a definite assumption of rupture geometry. In Eq. (1), \(\mu \) denotes the rigidity and \(\lambda \) is the Lamè parameter. We assume that the crust is elastic and homogeneous. Hence, \(\mu = \lambda = 30 \text{ GPa} \) (Fowler, 2004; Piombo et al, 2007). Additionally, the seismic moment can be presented by the rupture area and average slip as below:

\[M_0 = \mu A D \]

Moreover, the seismic moment is dependent on the rupture area (A) and average slip (\(D \)); thus, the average slip can be estimated by following Eq. (2), and it is calculated to be 8.25 m. Then, the seismic moment can be transformed into the magnitude \(M_w \) by the following (Hanks and Kanamori, 1979):

\[M_w = \left(\frac{\log M_0}{1.5} \right) - 10.73 \]

Therefore, the maximum possible earthquake magnitude is \(M_w 8.15 \) (\(M_0 = 2.07 \times 10^{28} \text{ dyne-cm} \)).

2.2 Stochastic Slip Model

The rupture process of an earthquake is extremely complex. The seismic inversion results reveal that the slip distribution of a rupture is heterogeneous with spatio-temporal development. Using a simplified uniform slip distribution to simulate a tsunami only captures only the long-wavelength portion of the tsunami field (Geist and Dmowska, 1999). In addition, the temporal description of the seismic rupture process can be ignored because the propagation velocity of the tsunami wave is substantially slower than the seismic rupture velocity (Dean and Dalrymple, 1991; Ma et al., 1991; Wang and Liu, 2006). Andrews (1980) showed that the static slip distribution is directly related to stress changes and that the spectrum of the slip distribution is proportional to \(k^{-2} \) decay in the wavenumber domain:

\[|F_{s,t}[D_{x,y}]| \propto k^{-2} \]
where $D_{x,y}$ is the slip distribution over a 2D lattice, $F_{s,t}$ is the 2D Fourier transform, and $k = \sqrt{k_x^2 + k_y^2}$ is the radial wavenumber. The k^{-2} power law illustrates that the slip distribution has self-similar characteristics and from the fractal perspective; moreover, this characteristic can be demonstrated from a fractal perspective (Tsai, 1997). Based on self-similarity, Herrero and Bernard (1994) based on self-similar introducing introduced the k-square model, which leads to the ω-square model (Aki, 1967). The slip spectrum follows k^{-2} decay beyond the corner radial wavenumber, (k_c), which is proportional to $1/L_c$. The L_c depends on the characteristic rupture dimension (Geist, 2002).

The heterogeneous slip distribution is proportional to k^{-2} and is similar to a fractional Brownian motion as a stochastic process (Tsai, 1997). The stochastic slip distribution can be described by convolution multiplication in the Fourier domain,

$$D_{x,y} \propto F_{x,y}^{-1} \left[F_{x,y} \left[X_{x,y} \right] \times k^{-2} \right]$$

(5)

where $X_{x,y}$ is a random variable for the spatial distribution; moreover, it makes that randomizes the phase random, and $F_{x,y}^{-1}$ is the inverse 2D Fourier transform. The random distribution of X, which is best described by a non-Gaussian distribution, especially by a Lévy distribution, can be calculated by reversing Eq. (5) (Lavallée and Archuleta, 2003; Lavallée et al., 2006).

The Lévy distribution can be described by 4 parameters, namely α, β, γ and μ_L, as below follows:

$$q(t) = \begin{cases} \exp \left(-\gamma^{\alpha} |t|^\alpha \left[1 + i\beta \text{sign}(t) \tan \frac{\pi \alpha}{2} (|yt|^{1-\alpha} - 1) \right] + i\mu_L t \right), & \alpha \neq 1 \\ \exp \left(-\gamma |t| \left[1 + i\frac{2}{\pi} \text{sign}(t)(|t| + \ln \gamma) \right] + i\mu_L t \right), & \alpha = 1 \end{cases}$$

(6)

The parameter $\alpha, 0 < \alpha < 2$, affects the falloff rate of the probability density function (PDF) for the tail. The parameter $\beta, -1 \leq \beta \leq 1$, controls the skewness of the PDF. The parameter $\gamma, \gamma > 0$, controls the width of the PDF. The parameter $\mu_L, -\infty < \mu_L < \infty$, is related to the location of the PDF. The Lévy distribution is good to describe effective at describing the distribution of a random variable, i.e., X, from real earthquake events, which implies implying that the slip distribution without self-similar characteristics similarity has a heavy tail behavior (Lavallée et al., 2006). From the Based on experiments of generating stochastic slip distribution, the distributions, this heavy tail behavior affects the intensity of an extreme value (Lavallée and Archuleta, 2003).

The stochastic slip distribution is generated by a 2D spatially random distribution with convoluting by imposing a self-similar characteristic beyond the corner radial wavenumber, constraining which is constrained by the rupture dimension, in the wavenumber domain. In this study, the potential rupture fault is divided into 5×5 km2 subfaults. The number grid is composed of grid mesh is 24×14 which are meshes along the strike and dip directions, respectively. The spatial random variable produced variable with a spatially random distribution adopts the Lévy distribution $(\alpha=1.51, \beta=0.2, \gamma=28.3, \mu_L=-0.9)$, which is the dip slip result from Lavallée et al. (2006) as Figure shown in Fig. 1a. In Lavallée et al. (2006), the slip distribution of the Northridge earthquake had been was divided into the dip-slip and strike-slip directions, and they were calculated by an inverse 2D
stochastic model to obtain the values of the Lévy PDF. The values of the Lévy PDF, which are mentioned above, are given over to indicative of the result of dip-slip direction. The Northridge earthquake is a thrust earthquake (Davis, 1994) so that, and thus, it roughly has similar faulting mechanism with that is approximately similar to our scenario fault model. In addition, the inverse. There are no inverted slip distribution in models of past earthquakes in the study region is lack area to do the conduct an analysis of Lévy the Lévy PDF. Therefore parameters; therefore, the value of Lévy distribution in Lavallée et al. (2006) is adopted in this study. InFrom the perspective of mathematical operations, the slip distribution in Eq. (5) represents a kind of filtered random distribution. However, for consistency with the physical behavior over the rupture surface is suggested by the results of the inverse method the modeling, truncation has to of the Lévy distribution must be applied to the Lévy distribution performed to constrain the extreme slip value. The synthetic slip distribution (Fig. 1b) produced by spatial the spatially random distribution in Figure Fig. 1a is heterogeneous, and its power spectrum obeys a k-square model at high wavenumber wavenumbers (Fig. 1c). The average slip of this synthetic slip distribution is 8.25 m, which represents indicating that the earthquake energy keeping as is constant as estimating estimated above, and the maximum slip is 31.02 m.

The One hundred different slip distributions are produced for the tsunami simulation. They represent the uncertainty of the results of associated with complex rupture processes. In the 100 sets of results, the maximum slip range is between 20.17 and 37.97 m. There are no smooth process and extra Smooth processes are not included, nor are additional regional constrain constraints for the slip distribution. There are two reasons for this application. The first is that we do not have information for regarding where the plate interface is locked or the location of asperity asperities often repeat in historical events. The second is that there some studies presented reported that the asperity expanding asperities extend to the boundary of the fault model (Ide et al., 2011; Lay et al., 2011; Shao et al., 2011; Yue and Lay, 2011). According to these reasons, we do not prefer to apply any extra constraint additional constraints for stochastic slip distributions. By same token, Similarly, the uniform slip case is constitutes a complete uniform slip distribution over the whole fault plane. Figure 1b and 1d demonstrates the stochastic distribution of the scenario source models causing the maximum and minimum wave heights, respectively, at the recording station 26 (Hualien) (Fig. 2). Both patterns affecting the propagation will be discussed in Sect. 3.1.

2.3 Numerical Tsunami Simulation

Figure 2 shows the computational domain, recording stations and fault model. The potential rupture fault is divided into 5 x 5 km² subfaults, and the stochastic slip distribution model is applied to determine the amount of discrete slip on each subfault. Vertical seafloor displacements caused by slip along the rupture slipplane are calculated using elastic dislocation theory (Okada, 1985). The Cornell Multigrid Coupled Tsunami Model (COMCOT) is used to perform the tsunami simulations. COMCOT is capable of efficiently studying the entire life-span of a tsunami, including its generation, propagation, runup and inundation (Wang, 2009). It, and it has been widely used in studying many historical tsunami events, such as the 1960 Chilean tsunami (Liu et al., 1995), 1992 Flores Islands tsunami (Liu et al., 1995), 2003 Algeria tsunami (Wang and Liu, 2011).
COMCOT solves the linear or nonlinear shallow water equations for spherical or Cartesian coordinates using the finite difference method. With the flexible nested grid system, it can properly exhibit guarantee both the efficiency and the accuracy from the near-coastal region to the far-field region. Two grid layers are used to simulate the propagation of tsunamis.

The Manning coefficient is 0.013 in this study to assume a sandy sea bottom (Wu, et al., 2008). The bathymetry adopted NOAA's (open data from the National Oceanic and Atmospheric Administration) open data which can be download from https://maps.ngdc.noaa.gov/viewers/wcs-client/ (Amante and Eakins, 2009). The resolution of the outer layer is 4 minutes for the solution of the linear shallow water equation, and the resolution of the inner layer is 1 minute for the solution of the nonlinear form of the shallow water equation. There are 30 recording stations referring to the positions of tidal gauges maintained by the Central Weather Bureau (CWB) along the coastlines of Taiwan and the outlying islands. The CWB website presents the locations of the tide stations (http://eservice.cwb.gov.tw/HistoryDataQuery/index.jsp and http://www.cwb.gov.tw/V7e/climate/marine_stat/tide.htm). These locations are shifted slightly to the node of grid in order nodes to record accurately. Table 1 presents the locations and water depths of the recording stations in the computational mesh.

3 The effect of heterogeneous slip on the tsunamis

The stochastic slip model produces different slip distributions with the same fault geometry, in addition to a constant average slip and a constant seismic moment. The model is used to describe the heterogeneous slip pattern of an earthquake and to further examine its effect on the tsunamis occurring at the southernmost end of the Ryukyu subduction zone adjacent to Taiwan. According to the previous sections, the maximum possible earthquake magnitude is determined to be M_w 8.15 with 8.25 m average slip of 8.25 m. Furthermore, the uniform slip distribution on the rupture plane is also used to simulate tsunami for discussing the different difference between the effects of uniform and heterogeneous slip on the tsunamis.

3.1 Initial water elevation and energy propagation

The static vertical displacement of the ocean floor is modeled using the elastic dislocation theory (Okada, 1985) and considered with a static slip distribution. The vertical seafloor displacement is used to be modeled as the initial water level, and the horizontal component of the seabed displacement is not included in the simulation. Figure 3a shows the initial water elevations produced by a uniform slip distribution, and Figure 3b exhibits the maximum free-surface elevation during the propagation. Figure 3c and 3e demonstrate the initial water elevations produced by the stochastic slip distributions (Fig. 1b and 1d). The initial water elevation by with a uniform slip distribution is simple and smooth, but for the those with stochastic...
slip models are more complex and relatively heterogeneous. Nonuniform slip causes an apparent change in the wavelength distribution of the initial free-surface elevation (i.e., the potential energy distribution), which affects the path of energy propagation. In the uniform slip scenario, the maximum free-surface elevation pattern is clearly straightforward and clearly controlled by the topography. However, many strong and seemingly chaotic paths of wave energy appear in the nonuniform slip scenarios, and the ocean free-surface field exhibits additional uncertainties in terms of the flow. In Figure 3b, the maximum free-surface elevation mainly travels toward two places where the seafloor elevation becomes shallower, relative to the deep areas northeast of Taiwan as shown in Fig. 2. Although the propagation by paths due to the nonuniform slip distributions (Fig. 3d and 3f) also have the same characteristics, it is notable that the paths followed by the wave energy differ, which depends on the rupture pattern.

At the northeast of Taiwan in Figure 3f, there is a strong wave path connecting the two higher-elevation areas of bathymetry. However, this behavior does not occur in Figure 3b and 3d. Besides that, at the footwall side, the maximum elevation of Figure 3d is higher than that in Fig. 3f. In Figure 3b, the high elevation only appears along the coast, whereas on the footwall side. These results indicate that the wave energy variation depends on the rupture pattern, thereby causing differences in the wave paths and leading to totally different tsunami amplitudes.

3.2 Wave characteristics

There are 30 stations located along the coast for recording the motion amplitude of sea level and tsunami wave height. Relative to the other stations, the stations 25 (Shihti), 26 (Hualien) and 27 (Suao) are situated near the potential rupture fault, and they have high wave amplitudes and enormous variations in the tsunami simulations of 100 different slip distributions so that, consequently, the time series of the wave heights at these stations are shown as an example (Fig. 4). The varied wavelength variability in the distribution of the initial free-surface elevation results in substantial phase changes and different wave heights. It is worth noting that the average of the disordered and chaotic time series produced by the 100 different slip distributions is almost identical to the results produced by the uniform case. This implies that the uniform case simply represents an average result and cannot represent all of the possible situations.

According to the statistical results from 100 different slip patterns (Table 1) for 30 stations, Hualien station has the maximum wave amplitude of 7.32 m, and its maximum wave amplitude interval ranges from 1.87 to 7.32 m. These findings indicate that Hualien station has a high uncertainty in this scenario setting. However, the maximum wave amplitudes from the uniform slip distribution are relatively lower than those from the stochastic results. Following the above lecture findings, we need to
3.3 The peak tsunami amplitude probability

According to the results of our simulations, we calculated the probability of the peak/maximum tsunami amplitudes (PTA) at each recording station as shown in Figure 5 by the histogram of Fig. 5. To verify the representativeness of the PTA probability distributions, another 100 sets of different slip distributions had been produced with and simulated under the same seismic conditions and simulated. In Figure 5, the shapes of the PTA distributions from another 100 sets—(black lines)—are similar to the shapes of the histograms from the first 100 sets. These results verify the representativeness of the PTA probability distributions produced from 100 sets of slip distributions. This test also reinforces the reproducibility of our simulations and demonstrates that the number of simulations is roughly satisfactory for statistical analysis. Of course, the more slip distribution we use, the more comprehensive and stable the range we obtain.

In Figure 5, the PTA distributions at the stations in eastern Taiwan—(red markers)—have obviously higher values than those in western Taiwan (blue markers) due to the specified location of the source of tsunami. The shapes of the PTA distributions in eastern Taiwan seem like log-normal distribution and resemble lognormal distributions, while those in western Taiwan resemble normal distribution. We suppose that the attenuation of wave propagation causes the shape of log-normal distribution degenerating into normal distribution. The PTA values produced by a uniform slip distribution are generally located in the middle of the PTA distributions. Both PTA values (i.e., the value of the PTA values from the uniform slip distribution and the values of the PTA—those from the stochastic slip distribution models) decrease with the distance from the potential fault because of the attenuation of wave propagation (Fig. Figure 5 shows the results for all stations, and Fig. 6 shows station results for stations 20 to 30 in the eastern Taiwan). However, some stations are not perfectly following this, for instance, station e.g., stations 17, 19, and 21 which do not precisely follow this trend; this could be affected by the result of the coastal topography and the presence of an energy channel. From Figure 3d, Fig. 3d, in comparison with the adjacent coastline, station 21 comparing with neighbor coast is located exactly at the location where the wave energy gathers. In addition, the broad distributions are frequently observed at promontories along the coastline and are caused by complex propagation path effects between the source region and the recording locations (Geist, 2002). There are many compound factors that affect the tsunami propagation and maximum wave height. Figure 6 presents the relation between the distance and wave height and also shows the PTA distribution as Figure 5 distributions following Fig. 5. The distance isx-axis presents the shortest distance between the stations and fault plane. On the footwall side, the stations 20 and 22 are outer island. They which do not directly face the energy propagation path directly (Fig. 3f) so that the, are located on islands off the coast of Taiwan;
consequently, their PTA distributions are lower than those of stations 21 and 23, even though the distances from the potential fault are similar. On the hanging wall, station 29 is farther from coast comparing the coastline of Taiwan than other stations; however, because of the real location of the station and its numerical grid setting so that the, its PTA distribution is lower than that of station 30 (Fig. 3b). The ranges of the PTA distributions converge with increasing distance on the both sides of the fault. Moreover, the PTA distributions and their average values roughly exhibit a linear decrease with increasing distance except for stations 25 and 26. In contrast, these two stations in the near field, stations 26 and 27, are directly affected by seafloor deformation so that the PTA initial water elevation, and thus, the PTAs caused by uniform slip are quite low.

Although the seismic parameters have been defined as constants in our experiment and been held constants, there exist an uncertainty for in the PTA rather than, which is not a constant value. The uniform case cannot provide this uncertainty, and thus, the PTA could be underestimated. Results give specific PTA ranges, which represent the wave height uncertainties for the scenario of the earthquakes originating from the Ryukyu Trench. It is therefore necessary to consider the effects of a heterogeneous slip distribution for comprehensively assessing the tsunami hazard.

4 Discussion

4.1 Tsunami

Most coastlines threatened by near-field tsunami is parallel the subduction zone like the coast tsunami, such as the coasts of Chile, Japan and Indonesia. There, are many parallel to the trench axis of the associated subduction zones. Many tsunami event occurring these regions such as the 2010 events, including the Mw 8.8, Chile earthquake in 2010 (Lay et al., 2010; Fritz et al., 2011), the 2011, Mw 9.0, Tohoku earthquake in 2011 (Goda et al., 2015; Goda and Song, 2016), the 2004, Mw 9.1, Sumatra earthquake in 2004 (Lay et al., 2005), and the 2010, Mw 8.1, Mentawai earthquake in 2010 (Satake et al., 2013), have occurred along these regions. However, the potential rupture fault in this study along the southernmost Ryukyu subduction zone is perpendicular to the coast of Taiwan island, which directly affects the first movement of wave. On motion. The first motion on the footwall, the first movement is up, but conversely, it is down. On the first motion on the hanging wall is down. As a result, the coastline retreats from the land to the sea as the first tsunami wave approaches, allowing people have additional time to leave the seashore.
The effect of heterogeneous slip distribution is important and necessary to consider for the near field estimation. Geist, 2002 and Ruiz et al., 2015). Figure 5 shows that the PTA distributions in the near field are broad and they narrow with distance increasing distance from the potential fault. The uncertainty in the near field is higher than that in the far field. At the most of the stations, the values of the average PTA approach uniform results, but at station 25 and 26, their uniform slip results at stations 25 and 26 are close to the minimum PTA (Table 1). Geist (2002) presented the average and extreme PTA in the nearshore PTA calculated for 100 different slip distributions and compared them with the uniform slip result (Figure 6a in Geist, 2002). The range of the PTA also narrows becomes narrower with distance increasing distance. The values of the uniform slip distribution and the average of PTA are similar, but there are some average values are close to the minimum PTA at station 25 and 26, their uniform slip results are close to the minimum PTA (Table 1). Geist (2002) presented the average and extreme PTA in the nearshore PTA calculated for 100 different slip distributions and compared them with the uniform slip result (Figure 6a in Geist, 2002). The range of the PTA also narrows becomes narrower with distance increasing distance. The values of the uniform slip distribution and the average of PTA are similar, but there are some average values are close to the minimum PTA at station 25 and 26, their uniform slip results are close to the minimum PTA (Table 1). Geist (2002) presented the average and extreme PTA in the nearshore PTA calculated for 100 different slip distributions and compared them with the uniform slip result (Figure 6a in Geist, 2002). The range of the PTA also narrows becomes narrower with distance increasing distance. The values of the uniform slip distribution and the average of PTA are similar, but there are some average values are close to the minimum PTA at station 25 and 26, their uniform slip results are close to the minimum PTA (Table 1).

There are four nuclear power plants (NPPs) are located on the island of Taiwan island. According to the numerical results, we infer that the PTA mean value of NPP4 PTA in the coastal area is around of NPP4 ranges from approximately 2 to 3 m. The distribution at this plant may be wilder than those at other nuclear power plants due to the relative position of the tsunami source. Moreover, NPP4 is located on the shore of a bay with a curved shape so that the extra magnification effect perhaps makes the geometrical shape of the bay may serve to enhance the PTA higher. The location of the plant (Fig. 3b, 3d and 3f). For the coastal areas around NPP1 and NPP2 coastal area, the PTA distributions are between 1 and 2 m. The coastlines of these two nuclear power plants face slightly to face the direction of tsunami current so that its PTA propagation, and thus, their PTAs should be higher than neighbor coastlines along adjacent coastlines (Fig. 3b, 3d and 3f). In general, under this scenario, the coastline at NPP4 has the largest threat. Although the NPP3 is far from the tsunami source, it roughly faces a wave height of approximately 1.5 m on average and has with a ±0.5 m uncertain range of uncertainty. However, the NPP3 is more closer to the Manila subduction zone which, and thus, it could be threatened by a tsunami originating from the Manila Trench. The coast In contrast, the coastlines of NPP1 and NPP2 are relatively safe and have less uncertainty for have fewer uncertainties with regard to the PTA.

The use of heterogeneous slip distribution clearly delineates the range of possible waveforms and provides more information on latent uncertainties of the wave height. The 95% confidence intervals for the wave height from 100 sets present in each time series and provide us a specific range for the motion amplitude of sea level tsunami wave (Fig. 4). According to these time series, we are aware of the periods of tsunami runup and runoff and can prepare the supporting policies to reduce disaster associated disasters. For example, a nuclear power plant has the includes a trench of water intake from the
ocean for cooling the intake of water to cool the reactor, and thus, if the motion of sea level is too low to take the in water, the temperature of the reactor will be too high and then cause the rise excessively, causing a nuclear disaster. Based on the results of simulations, we can estimate that how much water should be stored for tsunami runoff. This issue is necessary to pay more attention in Taiwan because there are four nuclear power plants located near the coast.

4.2 Stochastic slip model

The results of the tsunami simulations illustrate that the effect of the slip distribution on the rupture plane has a significant effect on the wave propagation and wave height. The correctness of this slip distribution determines whether the wave height calculations represent a useful reference or not. However, some parameters of the stochastic model could influence the synthetic slip distributions. For instance, the exponent of the slip spectrum associates is associated with the roughness of the slip distribution. Higher exponential value inhibits the powers of high wavenumber wavenumbers, leading to smoother slip distributions; conversely, lower value leads to rougher slip distributions. In general, the k-square model needs to be followed. Furthermore, the interpolation of the slip distribution for a given geometry will affect the exponent of k (Tsai, 1997). Interpolation will smooth the original pattern, and the powers of short wavenumber wavenumbers will be depressing and the powers of long wavenumber wavenumbers will be enhancing. Additionally, the random spatial variability of the slip distribution is relatively critical. According to Lavallée and Archeleta (2003) and Lavallée et al. (2006), we adopt the truncated non-Gaussian distribution for the spatial variability. Truncation limits the non-Gaussian distribution to a particular range. However, extreme truncation will cause the heavy-tailed characteristic of this distribution to become less pronounced or even disappear, as insimilar to a Gaussian distribution. In mathematics, the synthetic slip distribution is a filtering process in mathematics soinsomuch that the characteristics of a heavy-tailed characteristic affect the extremum of the slip distribution. The maximum slip will be greater as the truncated range increases. The maximum slip may exceed reasonable values asif the truncated range is excessively wide. Therefore, the parameters must be chosen carefully in order to match the observations acquired by inversion.

5 Conclusion

The maximum possible earthquake scenario magnitude is M_w 8.15 with an average slip of 8.25 m in the southernmost portion of the Ryukyu Trench. One hundred slip distributions of the seismic rupture surface were generated by a stochastic slip model. The maximum slip range is between 20.17 and 37.97 m, and the average slip all consists of each model is consistent with 8.25 m. A heterogeneous slip distribution induces variability in the tsunami wave heights and the associated paths of propagation. The simulated results demonstrate that the complexity of the rupture plane has a significant
influence on the near field for local tsunamis. The PTA distribution provides a specific range for the wave height and its occurring probability of occurrence in this scenario. These distributions and their average values roughly appear to exhibit an approximately linear decrease with increasing distance. The coastline, which is situated very close to or even atop the tsunami source or even upon, is directly affected by the rupture slip distribution. Then, the range of the PTA distribution will converge with increasing distance increasing from the tsunami source. In this study, Hualien station, which is located directly above the source, has the wildest PTA interval (1.87-7.32 m) and the highest wave amplitude. The statistical summary reveals that this station, whose standard deviation is 1.63 m, which is larger than those of the other stations, has the largest uncertainty. However, the PTA caused by the uniform slip distribution is only 1.63 m, which is much lower, and is even below the average (3.36 m) in this station. This finding implies that a simplified earthquake source cannot completely represent the tsunami amplitudes in reality. If we adopt a uniform slip distribution to assess tsunami hazards, those hazards will be critically underestimated. Furthermore, the variances of tsunami amplitudes, which have characteristically extreme variance, are imperative for assessing tsunami hazards, and the quantitative technique employed is also important.

15 References

Figure 1: (a) The spatially random variable: truncated Lévy distribution. The Lévy parameters obtained from the Northridge earthquake were taken from Lavallée et al (2006). (b) A stochastic slip distribution is generated from by filtering the spatial random variable X, in Fig. 1a. This slip pattern produces the highest maximum wave amplitude at Hualien station. (c) The slip spectrum is calculated from Fig. 1b. This slip spectrum decays with an exponent of -2 according to a characteristic corner radial wavenumber. This verifies that the synthetic slip distribution is identical to the k-square model and the condition of the rupture dimension. (d) This stochastic slip distribution produces the lowest maximum wave amplitude at Hualien station.
Figure 2.: The map of Taiwan presents the fault model and recording stations used in this study. The bathymetry is divided into 2 layers with different resolutions. The resolution of the outer layer is 4 minutes, and the resolution of the inner layer of the white box is 1 minute. The red grid denotes the potential fault model (5×5 km²). Pins grid size. The pins represent 30 tidal gauges of the CWB. The red and blue colors indicate stations on the eastern and western sides of Taiwan, respectively. Yellow, and the yellow squares represent the sites of the nuclear power plants.
Figure 3: (a), (c) and (e) are the initial water elevation, and colorbar represents the elevation of the initial water surface. (b), (d) and (f) are the maximum free-surface elevation, (i.e., the distribution of the energy path), and colorbar represents the elevation of the maximum free-surface. (a) and (b) display the results from a uniform slip distribution. (c) and (d) display the results from Fig. 1b. (e) and (f) display the results from Fig. 1d. In fundamental, the...
seafloor elevation fundamentally dominates the tsunami propagation, but the slip distribution also has a strong influence. In (a, c and e), yellow squares represent nuclear power plants NPPs; in (b, d and f), they are represented by open squares.
Figure 4: The time series of the wave heights recorded at stations 25 (Shihti), 26 (Hualien) and 27 (Suao). Gray lines represent the time series of 100 different slip distributions; black lines represent the averages of the gray lines; blue lines represent the 95% confidence intervals; and red lines are the time series produced using uniform slip distributions. Parts of the wave heights at station 27 are lower than the water depths, and thus, these curves have been truncated.
Wave height (m)

P(z)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Wave height (m)
Figure 5: The probabilities of the PTA along the coast of Taiwan (blue: stations 1–19, red: stations 20–30). The histograms display the PTA derived from 100 different slip simulations. The black lines represent the results from another 100 simulations, and the orange lines represent the PTA obtained using a uniform slip distribution. The PTA probability distribution gives a clear PTA range and its occurring probability. The map of Taiwan shows the station locations and the sites of four NPPs (yellow squares).
Figure 6.: The relation between the distance and wave height for stations from 20 to through 30 in the eastern Taiwan. (a) is the station on the footwall side. Stations 20 and 22 (blue color) are off the shoreline of Taiwan island. (b) represents the stations on the hanging wall side. Both sides roughly appear exhibit a linear decay and range of uncertainty range converging with distance increasing distance for the tsunami amplitude. Red bars show the PTA of the uniform slip distribution, and yellow bars show the average of the PTA PTA s from the stochastic slip models.

Table 1. This table lists the: The maximum, minimum, standard deviation and average wave heights with their standard deviations for the PTA probability distributions (in meter). It also lists (meters) with the maximum wave heights from the uniform slip model. The water depths at the stations in the computational mesh are also included.
<table>
<thead>
<tr>
<th>#</th>
<th>Station</th>
<th>Lon.</th>
<th>Lat.</th>
<th>Min [m]</th>
<th>Max [m]</th>
<th>σ [m]</th>
<th>Avg. [m]</th>
<th>Water depth [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Linshanbi</td>
<td>121.5106</td>
<td>25.2844</td>
<td>0.80</td>
<td>1.32</td>
<td>0.108</td>
<td>1.04</td>
<td>1.02</td>
</tr>
<tr>
<td>2</td>
<td>Danshuei</td>
<td>121.4019</td>
<td>25.1844</td>
<td>0.55</td>
<td>0.83</td>
<td>0.061</td>
<td>0.68</td>
<td>0.68</td>
</tr>
<tr>
<td>3</td>
<td>Jhuwei</td>
<td>121.2353</td>
<td>25.1200</td>
<td>0.33</td>
<td>0.52</td>
<td>0.039</td>
<td>0.44</td>
<td>0.45</td>
</tr>
<tr>
<td>4</td>
<td>Hsinchu</td>
<td>120.9122</td>
<td>24.8503</td>
<td>0.13</td>
<td>0.24</td>
<td>0.025</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>Waipu</td>
<td>120.7717</td>
<td>24.6514</td>
<td>0.15</td>
<td>0.26</td>
<td>0.020</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>6</td>
<td>Taichung Port</td>
<td>120.5250</td>
<td>24.2917</td>
<td>0.07</td>
<td>0.11</td>
<td>0.009</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>7</td>
<td>Fanyuan</td>
<td>120.2972</td>
<td>23.9147</td>
<td>0.04</td>
<td>0.06</td>
<td>0.004</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>8</td>
<td>Bozihliao</td>
<td>120.1417</td>
<td>23.6250</td>
<td>0.05</td>
<td>0.07</td>
<td>0.004</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>9</td>
<td>Penghu</td>
<td>119.5669</td>
<td>23.5636</td>
<td>0.07</td>
<td>0.09</td>
<td>0.005</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>10</td>
<td>Dongshih</td>
<td>120.1417</td>
<td>23.4417</td>
<td>0.06</td>
<td>0.09</td>
<td>0.005</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>11</td>
<td>Jiangjyun</td>
<td>120.1000</td>
<td>23.2181</td>
<td>0.06</td>
<td>0.10</td>
<td>0.007</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>12</td>
<td>Anping</td>
<td>120.1583</td>
<td>22.9750</td>
<td>0.15</td>
<td>0.26</td>
<td>0.018</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>13</td>
<td>Yongan</td>
<td>120.1917</td>
<td>22.8083</td>
<td>0.11</td>
<td>0.20</td>
<td>0.016</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>14</td>
<td>Kaohsiung</td>
<td>120.2883</td>
<td>22.6144</td>
<td>0.23</td>
<td>0.43</td>
<td>0.039</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>15</td>
<td>Donggang</td>
<td>120.4417</td>
<td>22.4583</td>
<td>0.15</td>
<td>0.28</td>
<td>0.026</td>
<td>0.21</td>
<td>0.20</td>
</tr>
<tr>
<td>16</td>
<td>Siaoliouciou</td>
<td>120.3750</td>
<td>22.3583</td>
<td>0.17</td>
<td>0.40</td>
<td>0.046</td>
<td>0.26</td>
<td>0.22</td>
</tr>
<tr>
<td>17</td>
<td>Jiahe</td>
<td>120.6083</td>
<td>22.3250</td>
<td>0.90</td>
<td>1.44</td>
<td>0.098</td>
<td>1.19</td>
<td>1.20</td>
</tr>
<tr>
<td>18</td>
<td>Syunguangzuei</td>
<td>120.6917</td>
<td>21.9917</td>
<td>0.33</td>
<td>0.96</td>
<td>0.124</td>
<td>0.61</td>
<td>0.49</td>
</tr>
<tr>
<td>19</td>
<td>Houbihu</td>
<td>120.7583</td>
<td>21.9417</td>
<td>0.90</td>
<td>1.96</td>
<td>0.197</td>
<td>1.41</td>
<td>1.40</td>
</tr>
<tr>
<td>20</td>
<td>Lanyu</td>
<td>121.4917</td>
<td>22.0583</td>
<td>0.39</td>
<td>1.15</td>
<td>0.155</td>
<td>0.69</td>
<td>0.54</td>
</tr>
<tr>
<td>21</td>
<td>Dawu</td>
<td>120.8972</td>
<td>22.3375</td>
<td>1.05</td>
<td>3.06</td>
<td>0.487</td>
<td>1.89</td>
<td>1.74</td>
</tr>
<tr>
<td>22</td>
<td>Lyudao</td>
<td>121.4647</td>
<td>22.6622</td>
<td>0.58</td>
<td>2.04</td>
<td>0.316</td>
<td>1.12</td>
<td>0.78</td>
</tr>
<tr>
<td>23</td>
<td>Fugang</td>
<td>121.1917</td>
<td>22.7917</td>
<td>1.25</td>
<td>3.48</td>
<td>0.409</td>
<td>1.98</td>
<td>1.78</td>
</tr>
<tr>
<td>24</td>
<td>Chenggong</td>
<td>121.3767</td>
<td>23.0889</td>
<td>2.02</td>
<td>4.33</td>
<td>0.416</td>
<td>3.03</td>
<td>2.94</td>
</tr>
<tr>
<td>25</td>
<td>Shihti</td>
<td>121.5250</td>
<td>23.4917</td>
<td>1.20</td>
<td>4.59</td>
<td>0.680</td>
<td>2.42</td>
<td>1.48</td>
</tr>
<tr>
<td>26</td>
<td>Hualien</td>
<td>121.6231</td>
<td>23.9803</td>
<td>1.87</td>
<td>7.32</td>
<td>1.024</td>
<td>3.36</td>
<td>1.63</td>
</tr>
<tr>
<td>27</td>
<td>Suao</td>
<td>121.8686</td>
<td>24.5856</td>
<td>3.31</td>
<td>5.90</td>
<td>0.641</td>
<td>4.55</td>
<td>4.57</td>
</tr>
<tr>
<td>28</td>
<td>Gengfang</td>
<td>121.8619</td>
<td>24.9072</td>
<td>1.78</td>
<td>3.47</td>
<td>0.337</td>
<td>2.61</td>
<td>2.67</td>
</tr>
<tr>
<td>29</td>
<td>Longdong</td>
<td>121.9417</td>
<td>25.1250</td>
<td>0.80</td>
<td>1.88</td>
<td>0.202</td>
<td>1.23</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30</td>
<td>Keelung</td>
<td>121.7417</td>
<td>25.1750</td>
<td>1.19</td>
<td>1.96</td>
<td>0.183</td>
<td>1.57</td>
<td>1.55</td>
</tr>
</tbody>
</table>