Real-time prediction of rain-triggered lahars: incorporating seasonality and catchment recovery

Robbie Jonesa*, Vern Manvillea, Jeff Peakalla, Melanie Froudeb, c, Henry Odbertde

aSchool of Earth and Environment, University of Leeds, Leeds. LS2 9JT, United Kingdom
bSchool of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
cDepartment of Geography, University of Sheffield, 9 Northumberland Road, Sheffield, S10, UK
dSchool of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, United Kingdom
eMet Office, FitzRoy Road, Exeter, Devon, EX1 3PB, United Kingdom

*Correspondence to: Robbie Jones (eerj@leeds.ac.uk)

Abstract. Rain-triggered lahars are a significant secondary hydrological and geomorphic hazard at volcanoes where unconsolidated pyroclastic material produced by explosive eruptions is exposed to intense rainfall, often occurring for years to decades after the initial eruptive activity. Previous studies have shown that secondary lahar initiation is a function of rainfall parameters, source material characteristics and time since eruptive activity. In this study, probabilistic rain-triggered lahar forecasting models are developed using the lahar occurrence and rainfall record of the Belham River Valley at Soufrière Hills Volcano, Montserrat collected between April 2010 and April 2012. In addition to the use of peak rainfall intensity as a base forecasting parameter, considerations for the effects of rainfall seasonality and catchment evolution upon the initiation of rain-triggered lahars and the predictability of lahar generation are also incorporated into these models. Lahar probability increases with peak one-hour rainfall intensity throughout the two-year dataset, and is higher under given rainfall conditions in year one than year two. The probability of lahars is also enhanced during the wet season, when large-scale synoptic weather systems (including tropical cyclones) are more common and antecedent rainfall and thus levels of deposit saturation are typically increased. The incorporation of antecedent conditions and catchment evolution into logistic regression-based rain-triggered lahar probability estimation models is shown to enhance model performance and displays the potential for successful real-time prediction of lahars, even in areas featuring strongly seasonal climates and temporal catchment recovery.

1 Introduction

Lahars are rapidly flowing mixtures of rock debris and water (other than normal streamflow) from a volcano and represent a significant hazard due to their energetic nature and mobility (Smith and Fritz, 1989). Globally, 17% of historical volcano-related fatalities have occurred due to lahars (Auker et al., 2013); with decadal-scale hazards being created by some large eruptions (Major et al., 2000). Secondary, post-eruption lahars are dominantly the result of rainfall on unconsolidated pyroclastic deposits, which are typically remobilised by rilling due to Hortonian overland flow (Segerstrom, 1950; Waldron, 1967) or by shallow landsliding of saturated tephra layers above basal décollement surfaces (Iverson, 2000; Manville et al., 2000).

At present, rain-triggered lahar hazard identification is predominantly based on observations as well as ground-based flow detection systems such as Acoustic Flow Monitors (AFMs) or trip-wires at locations where such resources are available (e.g. Marcial et al., 1996; Lavigne et al., 2000). Previous studies featuring post-lahar
A

an analysis of flow observations and rainfall records at a range of volcanoes have displayed a power-law relationship indicating that lahar initiation occurs along a continuum from short duration, high intensity rainfall events to long duration, low-intensity events (e.g. Rodolfo and Arguden, 1991; Capra et al., 2010; Jones et al., 2015). Enhancing the use of local telemetered rainfall gauge networks within lahar hazard monitoring and assessment has the potential to increase the number of available mitigation tools whilst avoiding the lag-time between flow initiation and flow detection inherent in ground-based detection and observation. Globally, such pre-emptive prediction and forecasting of rain-triggered lahars based on telemetered rainfall data is lacking, although initial application of real-time rainfall data for lahar prediction has demonstrated increased lahar warning times compared with ground-based flow detection (Jones et al., 2015).

The initiation of rain-triggered lahars is dependent on the characteristics of rainfall, pyroclastic deposits and topography, indicating that both the climatic regime of lahar-prone regions and the hydrogeomorphic response of drainage basins to eruptive activity are important considerations in rain-triggered lahar research (Pierson and Major, 2014). Regions of high rainfall seasonality are predominantly distributed in the tropics and sub-tropics either side of the equator (Wang et al., 2010); whilst approximately 46% of active volcanoes are identified as being located in the humid tropics (Rodolfo and Arguden, 1991). Despite this geographic coincidence and the importance of climatic rainfall regimes on storm intensities, durations and antecedent conditions, all significant factors in lahar initiation (Pierson and Major, 2014), the impact of seasonal rainfall on rain-triggered lahar initiation has not previously been explicitly considered within the development of rain-triggered lahar hazard assessment tools.

Following a discrete volcanic eruption, sediment yields in impacted fluvial systems are amongst the highest recorded globally, but decline exponentially (Major et al., 2000), which is consistent with other examples of disturbed earth systems (Graf, 1977). Mechanisms include a reduction in available particulate material, vegetation recovery, fragmentation of runoff-enhancing surface crusts, exposure of more permeable substrates and the stabilisation of rill networks (Leavesley et al., 1989; Schumm and Rea, 1995; Major et al., 2000; Major and Yamakoshi, 2005). Conversely, at locations featuring recurrent or persistent volcanic activity, the magnitude of the lahar hazard remains relatively constant with time due to the regular supply of new material (Thouret et al., 2014). As a result, temporal catchment development is another factor which influences lahar frequency and magnitude, indicating that it is also an important consideration within the development of rain-triggered lahar hazard assessment tools.

This study uses probabilistic and diagnostic methods, including binary logistic regression and Receiver Operating Characteristic (ROC) analysis, to develop real-time rainfall-based lahar forecasting tools which account for the impacts of seasonal rainfall and catchment recovery on lahar occurrence in the Belham Valley, Montserrat. Such hazard assessment tools have the potential to be utilised both as a stand-alone tool where ground-based detection equipment is unavailable, and in conjunction with instrumental monitoring techniques to increase lahar warning times.

2 Soufrière Hills Volcano, Montserrat

Soufrière Hills Volcano (SHV, Montserrat, Lesser Antilles, 16.72°N, 62.18°W) lies on the northern edge of the Inter-Tropical Convergence Zone in the eastern Caribbean and has a strongly seasonal climate. Rainfall-producing weather systems affecting the island fall into two broad categories; large-scale synoptic (>100 km across) systems...
and local mesoscale (<100 km across) systems (Froude, 2015). Both can produce high intensity precipitation, but large-scale events can potentially be forecast days in advance whereas this timescale reduces to hours for local weather systems (Barclay et al., 2006).

The andesitic dome-forming eruption of SHV began in July 1995 and has featured several phases of activity consisting of dome growth, dome collapse and vulcanian explosions as well as pauses in magma extrusion (Bonadonna et al., 2002; Komorowski et al., 2010; Stinton et al., 2014). Pyroclastic density currents (PDCs) have deposited fine-grained ash- and pumice-rich and coarser-grained blocky deposits around the volcano (Cole et al., 2002; Stinton et al., 2014), supplemented by tephra deposits from short-lived Vulcanian explosions and associated fountain-collapse flows and surges (Komorowski et al., 2010). Prevailing winds often distribute ash from weak plumes to the West, but larger plumes can also deposit to the North, East and South (Bonadonna et al., 2002).

This intermittent eruptive activity has triggered a complex sedimentological response in drainages surrounding the volcano since 1995 (Barclay et al., 2006, 2007; Alexander et al., 2010; Froude, 2015).

3 The Belham Catchment

Data from the Belham Valley, Montserrat (Fig. 1) were used to examine the influence of rainfall seasonality and catchment evolution on the occurrence of rain-triggered lahars between April 2010 and April 2012 (Fig. 2). Lahars have persisted in the valley since the onset of eruptive activity in 1995 and have damaged infrastructure, including burying the Belham Bridge in 1998, resulting in the river bed being used as the primary transportation link between the “Safe Zone” and the “Daytime Entry Zone” (Barclay et al., 2007; Alexander et al., 2010).

The Belham Catchment had a pre-1995 surface area of c. 13.7 km², increasing to c. 14.8 km² early in the eruptive episode due to capture of a portion of Gage’s fan (Froude, 2015). During eruptive episodes tephra fall and pyroclastic density current (PDC) deposits accumulate in the upper catchment. The destruction and burial of vegetation in the Belham Valley reduces the infiltration and interception of precipitation, and in combination with a reduction in surface roughness enhances run-off and erosion rates and promotes rain-triggered lahar generation (Barclay et al., 2007; Alexander et al., 2010; Froude, 2015). Aggradation and sedimentation in the upper catchment during periods of eruptive activity are counter-balanced during periods of quiescence by channel development and stabilisation, exposure of more permeable substrates, vegetation recovery and a reduction in available sediment (Froude, 2015). The data period used here coincides with a lack of substantial eruptive activity at SHV following the 11th of February 2010 dome collapse at the end of “Phase 5”, which deposited stacked lobes of pumiceous PDC deposits up to 5.7 km from source in the Belham Valley (Stinton et al., 2014). This period of eruptive quiescence indicates that this study focuses on a time of channel development and stabilisation within the upper catchment of the Belham Valley.

4 Rainfall and Lahar Record

The record used in this study (Fig. 2) comprises 0.1 mm resolution hourly precipitation data recorded at the MVO Helipad Gauge between February 2010 and February 2011, the St George’s Hill gauge between March 2011 and May 2011, and the maximum of the St George’s Hill and Windy Hill gauges (Fig. 1) between May 2011 and February 2012. The lahar database (Fig. 2) is compiled from inspection of seismic records and visual observations. Lahar size (small, medium, large) is estimated based on recorded seismic amplitude and occupied valley width.
alongside flow start time, end time and duration. Division of the dataset into six-month moving windows, with staggered one-month start dates, facilitates the illustration of the seasonal variation in both the number of rainfall events exceeding One Hour Peak Rainfall Intensity (1hPRI: the highest resolution available) thresholds and the occurrence (and estimated magnitude) of lahars (Fig. 3).

5 Results

The six-month window between April and October is identified as the peak wet season in this study, with 1721 mm of recorded rainfall in the 2010 peak wet season (WS1) and 1455 mm in the 2011 peak wet season (WS2). The 2010/11 peak dry season (DS1) featured approximately 750 mm of rainfall, whilst 1076 mm of rainfall was recorded in the 2011/12 peak dry season (DS2). Mean WS1 and WS2 1hPRIs are 5.2 mm hr\(^{-1}\) and 5.0 mm hr\(^{-1}\) respectively, whilst mean dry season 1hPRIs are 2.2 mm hr\(^{-1}\) (DS1) and 3.3 mm hr\(^{-1}\) (DS2).

There is significant (p <0.01) correlation between recorded rainfall on timescales of 1-168 hours and lahar occurrence. When lahars are categorised by estimated magnitude, large lahars are strongly correlated with longer-duration (>24 hours) rainfall events, produced by the passage of synoptic weather systems. Between April 2010 and April 2012 large flows were directly attributed to several named tropical cyclones (Fig. 2). In contrast, smaller lahars display increased correlation with the passage of short-duration (<24 hours) rainfall events, more commonly associated with mesoscale weather systems.

5.1 Probabilistic rain-triggered lahar analysis

The correlation between peak rainfall intensity and lahar occurrence provides the platform for probabilistic analysis of lahar occurrence based on the 1hPRI of a rainfall event. Within this study a designated minimum inter-event dry period of six hours is utilised, meaning that in common with several previous soil erosion studies a dry interval of six hours is needed to define the end of a single rainfall event (Wischmeier and Smith 1978; Todisco, 2014). Results show that lahar probability increases with greater 1hPRI in both years of the Belham Valley dataset, with higher lahar probabilities in year 1 than year 2 for a given 1hPRI (Fig. 4).

Empirically-derived lahar probabilities for rainfall events featuring a given minimum 1hPRI fluctuate seasonally during the study period (Fig. 5). These 1hPRI exceedance-based lahar probabilities (Fig. 5) are initially stable during the 6-month windows focused on WS1 before decreasing during DS1, increasing during WS2 and once again decreasing into DS2. This indicates that more intense rainfall is required to trigger lahars in the dry season than in the wet season. Throughout the two-year study period increased 1hPRI correlates with increased lahar probability, displaying its effectiveness as a potential first-order lahar forecasting parameter.

In addition to seasonal fluctuations in relative lahar probability, there is an overall decline in relative lahar probabilities across the two-year study period (Figs. 4 & 5). The combination of seasonal fluctuation and temporal decline in lahar probability displayed in Figure 5 is examined further using binary logistic regression, a statistical method which estimates the probability of a dichotomous outcome using one or more independent variables (Hosmer Jr et al., 2013). In this instance the occurrence or non-occurrence of lahars (of any magnitude) is used as the dichotomous dependent variable and initially the 1hPRI of a rainfall event is the singular independent variable. Figure 6A displays logistic regression-based lahar probability estimation models generated by this approach using four sub-datasets; Year 1, Year 2, Wet Seasons and Dry Seasons. Within each of these four models
the model chi-square test indicated statistically significant lahar prediction ability ($p < 0.01$). Figure 6A displays higher estimated lahar probabilities at identical 1hrPRI values for Year 1 relative to Year 2 and Wet Seasons relative to Dry Seasons.

The potential benefit of incorporating considerations for seasonal and temporal effects within lahar forecasting models was investigated using further binary logistic regression. This approach selected alternate chronological rainfall events (minimum total rainfall ≥8 mm) from the two-year dataset, creating a model formulation dataset consisting of 74 rainfall events, of which 25 produced lahars. Lahar forecasting models were created from this model formulation dataset using binary logistic regression, and the remaining 73 rainfall events, of which 20 produced lahars, were retained for the assessment of the performance of the lahar forecasting models. Proxies for seasonal effects (antecedent rainfall on timescales of 1-90 days) and catchment recovery (long-term cumulative rainfall and days since significant eruptive activity) were tested in combination with 1hrPRI. The minimum event rainfall threshold of 8 mm (under which only two lahars occurred during the two-year dataset) was implemented for logistic regression and subsequent forecasting assessment in order to increase the balance between lahar and non-lahar outcomes and thus reduce skewed predicted probability.

Three-day antecedent rainfall displayed the biggest influence of the tested antecedent rainfall timescales upon the effectiveness of lahar forecasts, while total cumulative rainfall since significant eruptive activity best captured temporal catchment development effects. Therefore, the optimal lahar forecasting model developed from the model formulation dataset utilises 3-day antecedent rainfall and long-term cumulative rainfall alongside the first-order lahar forecasting parameter of 1hrPRI. The reverse stepwise logistic regression method (Hosmer Jr et al., 2013), which involves the deletion of variables whose removal from the model results in a statistically insignificant deterioration of model performance, retained these three independent variables. This model composition increased correct classification of rainfall event outcomes in the model formulation dataset from a null model value of 66% (when all events in the database are predicted to not trigger lahars) to 80% when using our explanatory variables, with model chi-square tests again indicating significant prediction ability ($p < 0.01$).

Model variables (X_i) and output regression coefficients (β_i) are used to construct lahar probability estimation equations by conversion of the logistic regression logit model (Eq. 1) in terms of probability.

$$ \text{logit}(p) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_n X_n $$

(1)

Eq. 2 displays the application of this to the multi-variable model, featuring the probability of lahar occurrence (p), 1hrPRI (R_t), three-day antecedent rainfall (A_t) and cumulative rainfall since significant eruptive activity (C).

$$ p = \frac{1}{1 + e^{-2.10 + 0.133 R_t + 0.001 A_t - 0.215 C}} $$

(2)

Eq.3 displays the lahar probability estimation model produced by the same dataset using only 1hrPRI as an independent variable.

$$ p = \frac{1}{1 + e^{-2.33 + 0.133 R_t}} $$

(3)

Application of Eqs. 2 & 3 to the 73 rainfall events in the forecasting assessment dataset produced two sets of model-derived lahar probability estimates. The lahar forecasting performance of the two models was then assessed relative to the actual outcomes (lahar or no lahar) of the rainfall events using Receiver Operating Characteristic (ROC) analysis (Fawcett, 2006). ROC analysis plots the true positive rate against the false positive rate as a threshold (estimated lahar probability) is varied in order to assess its ability to discriminate between lahar and non-lahar producing rainfall events. The area under the ROC curve (AUC) is a measure of the ability of a tool to
distinguish between the two outcomes, and varies between 0.5 (no predictive ability) and 1.0 (perfect predictive ability). The multiple-variable lahar probability estimation model shown in Eq. 2 produced an AUC of 0.83 (p<0.01), whilst the single variable model shown in Eq. 3 produced an AUC of 0.79 (p<0.01) (Fig. 6B). The AUC produced by Eq. 2 increases to 0.93 if the 8 mm event threshold is removed and the multi-variable model is applied to all 508 rainfall events that were not used in model formulation.

6 Discussion

Analysis of the Belham Valley lahar occurrence and rainfall record over a two-year period indicates that lahar probability and magnitude is a function of: (i) temporal catchment evolution towards more stable conditions – lahars are harder to trigger with time; and (ii) seasonal variations in rainfall – lahars are more common in the wet season both in terms of frequency and probability relative to 1hrPRI.

The multi-year temporal trend is attributed to a declining supply of easily erodible pyroclastic material in the upper catchment, coupled with stabilisation of channel networks, vegetation re-growth, and increased infiltration as identified in several previous studies of lahar-prone regions following eruptive activity (e.g. Leavesley et al., 1989; Schumm and Rea, 1995; Major et al., 2000; Major and Yamakoshi, 2005). The occurrence of several large rainfall events following Phase 5 of the eruption (Fig. 2) triggered a number of high-magnitude lahars within the Belham Valley, enhancing temporal channel development within the catchment and resulting in the widespread erosion and downstream transportation of pyroclastic material (Froude, 2015). Rapid re-vegetation during periods of eruptive quiescence has also been identified in the catchment (Froude, 2015), a process which increases infiltration, interception, evapotranspiration and surface roughness; reducing post-eruption runoff rates (Yamakoshi and Suwa, 2000; Ogawa et al., 2007; Alexander et al., 2010). Temporal increase in infiltration rates in the Belham Valley is also attributed to the exposure of more permeable substrates following the erosion of fine-grained surface tephra layers (Froude, 2015), a factor identified previously in studies of the landscape response to the 1980 eruption of Mt St Helens (Collins and Dunne, 1986; Leavesley et al., 1989).

Probabilistic analysis shows that throughout the two-year dataset utilised in this study, increased 1hrPRI results in increased lahar occurrence probability. Additionally, an increase in the absolute numbers of lahars and a reduction in rain-triggered lahar initiation thresholds are identified in the wet seasons. Seasonality in the nature and frequency of rainfall-generating weather systems controls this pattern. Large lahars are often associated with the passage of synoptic weather systems, which typically produce long-duration catchment-wide rainfall. This is demonstrated by the triggering of large lahars by several named storms during the study dataset including Hurricane Earl in August 2010, Tropical Storm Otto in October 2010 and Tropical Storm Maria in September 2011. Increased rainfall in the wet season also influences the dominant antecedent conditions within the catchment, resulting in reduced infiltration rates due to deposit saturation (Barclay et al., 2007). Increased antecedent rainfall can also produce runoff-enhancing surface seals (Segerstrom, 1950; Fohrer et al., 1999) and result in increased bulking efficiency during lahar transit due to high water contents in channel floor deposits (Iverson et al., 2011). These effects increase the overall probability of lahars in the wet season under given rainfall conditions due to flash-flood type responses to rainfall. The absence of large lahars in the dry season is attributed to the occurrence of fewer sustained catchment-wide synoptic weather systems as well as antecedent effects (low antecedent rainfall inhibits bulking efficiency in the dry season). The development of lahar magnitude assessment methods, from the subjective classification used in this study, towards quantitative initial flow volume estimates...
has the potential to enhance probabilistic lahar forecasting by creating probabilistic hazard footprints (Mead et al., 2016). However, such quantitative assessment methods are highly data intensive relative to those developed within this study, requiring pre- and post-eruption digital elevation models, location specific rainfall intensity-frequency-duration thresholds and physical deposit characteristics as input data (Mead et al., 2016). These input data requirements prohibit practical implementation of fully-quantitative magnitude estimates within probabilistic rain-triggered lahar assessment at all but the most thoroughly monitored volcanoes.

The incorporation of considerations for temporal catchment development and seasonality of prevalent antecedent conditions into logistic regression-based lahar probability estimation models increases rain-triggered lahar forecasting performance. The addition of these considerations modulates purely 1hrPRI-based probability estimates to account for initial deposit moisture content and the degree of catchment recovery during a period of eruptive quiescence. ROC analysis indicates an excellent ability to differentiate between lahar and non-lahar outcomes (AUC = 0.83) when only larger rainfall events resulting in ≥8 mm of total rainfall are considered, and this ability improves even further (AUC = 0.93) when the 8 mm threshold is removed. The readily available model inputs of 1hrPRI, three-day antecedent rainfall and cumulative rainfall since significant eruptive activity can be easily assimilated into functional real-time lahar probability estimation models and produces real benefits. Lahar forecasting using real-time telemetered rainfall data and these techniques has the potential to effectively predict secondary lahars and increase lahar warning times, even in areas where AFMs, proximal seismometers and trip wires are unavailable. Used in conjunction with ground-based detectors in instrumented catchments lahar warning times can be doubled (Jones et al., 2015).

Further research to expand the length of the current two-year study period would develop the understanding of the catchment recovery-driven temporal trends in lahar occurrence identified within this study. Likewise, the application of these techniques to additional volcanoes would facilitate both the further examination of the performance of the lahar forecasting models and the investigation of other important parameters contributing to the frequency and magnitude of rain-triggered lahar initiation.

7 Conclusions

This study demonstrates the development and enhancement of logistic regression-based rain-triggered lahar probability estimation models for real-time lahar forecasting using the lahar occurrence and rainfall record of the Belham Valley, Montserrat between April 2010 and April 2012. The incorporation of both antecedent rainfall and considerations for temporal catchment development into such models alongside the first-order lahar forecasting parameter of peak rainfall intensity is shown to improve lahar forecasting performance. Rainfall seasonality and catchment recovery are identified as important factors in the severity of the rain-triggered lahar hazard at Soufrière Hills Volcano, Montserrat, and by extension similar volcanoes worldwide. Seasonal influences increase both the absolute number of lahars and the probability of lahar occurrence under pre-defined rainfall conditions during the wet season due to antecedent effects. Lahar probability is also shown to decline with time under given antecedent and peak rainfall intensity conditions as a product of catchment evolution. Our results demonstrate the potential for successful real-time prediction of secondary lahars using readily available input data, even in areas featuring strongly seasonal climates and periods of eruptive quiescence.
Competing Interests

The authors declare that they have no conflict of interest.

Acknowledgements

This research was supported by STREVA (NERC/ESRC consortium NE/J02483X/1) and we are thankful to the Montserrat Volcano Observatory (MVO) for permission to use the lahar database and rain gauge dataset.
Figure Captions

Figure 1: Location map of Montserrat and Soufrière Hills Volcano.

Figure 2: Timeline illustrating hourly rainfall data (above) and rain-triggered lahar activity (below) in the Belham Valley, Montserrat between April 2010 and April 2012 (with minor gaps (shaded) due to equipment failure). S, M, and L on the vertical axis represent Small, Medium and Large lahars respectively, see text for details.

Figure 3: Illustration of the seasonal fluctuations in lahar occurrence displayed using 6-month data windows with 1-month staggered start dates. Vertical bars indicate the number of lahar events, categorised by magnitude, in each 6-month period. Background contours display the number of rainfall events exceeding specified Peak One Hour Rainfall Intensity (1hrPRI) thresholds, in each 6-month period.

Figure 4: Lahar probability, classified by magnitude, as categorised One Hour Peak Rainfall Intensity (1hrPRI) increases. (a) April 2010-April 2012 (b) April 2010-April 2011 (c) April 2011-April 2012.

Figure 5: Seasonal and temporal effects on lahar probability. Contour graph of empirically-derived lahar probability relative to the exceedance of One Hour Peak Rainfall Intensity (1hrPRI) thresholds in 6-month moving data windows with 1-month staggered start dates. White numbers and dashed lines show temporal trends. Following the empirically-derived 4 mm hr⁻¹ PRI contour, there is a 20% probability of a lahar if this threshold is exceeded at ① (6-month start date of 13/10/2010). This probability increases to 38% at ② (13/04/2011); and declines to 18% at ③ (13/10/2011).

Alternatively, reading horizontally across the graph for a lahar probability of 38% the associated PRI threshold increases from 4 mm hr⁻¹ at ② (13/04/2011) to approximately 15 mm hr⁻¹ at ④ (13/10/2011).

Figure 6: Assessment of binary logistic regression-based lahar probability estimation models in the Belham Valley, Montserrat. (a) Illustration of four binary logistic regression-based lahar probability estimation models created from Year 1, Year 2, Wet Season and Dry Season data. (b) ROC curves assessing the lahar forecasting performance of an exclusively 1hrPRI-centric logistic regression-based lahar probability estimation model and a multi-variable (1hrPRI, antecedent rainfall and long-term cumulative rainfall) model.
References

Fig. 1

[Map showing various locations and labels including Belham Catchment, Montserrat Volcano Observatory Rain Gauge, WH (Windy Hill Rain Gauge), SGH (St. George’s Hill Rain Gauge), and Soufrière Hills Volcano.]
Fig. 2
Fig. 3

![Diagram showing lahars](image-url)

Lahar Magnitude (Columns)
- Small
- Moderate
- Large

Minimum Hourly Rainfall Intensity (mm/hr)
- 0
- 2
- 4
- 6
- 15
- 25
- 35

No. of Lahars in 6-Month Window

No. Rainfall Events in 6-Month Window

March Month of 6-Month Window
Fig. 4

(a) Years 1 & 2
- Small Lahars
- Medium Lahars
- Large Lahars

(b) Year 1

(c) Year 2

Peak Rainfall Intensity [mm hr⁻¹]

Lahar Probability
Fig. 5

Minimum 1 Hour Peak Rainfall Intensity (mm/hr) Thresholds

% of events exceeding threshold over 6-Month Window

Start Month of 6-Month Window
Fig. 6

(a) Linear Probability

(b) Sensitivity (True-Positive Rate)

- Year 1
- Year 2
- Wet Seasons
- Dry Seasons

Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 23 May 2017
© Author(s) 2017. CC-BY 3.0 License.