Dear Editor,

Enclosed please find the revision of Manuscript ID: NHESS-2017-113 entitled "Planar Seismic Source Characterization Models Developed for Probabilistic Seismic Hazard Assessment of Istanbul". We appreciate your time and efforts during the review process. We are also thankful to the reviewers for valuable and constructive comments and for encouraging statements about the manuscript. In the revision, we have taken into account all the comments and made changes accordingly. Details of the actions taken regarding the comments and edits are provided below (all page, line, and figure numbers are given according to revised annotated manuscript).

Reviewer #1 – Main Issues

“This article exposes the development of a new hazard model for the city of Istanbul, Turkey. The model proposed mixes active faults and background seismicity. The subject is pertinent and the overall article is well-written and deserves to be published after some modifications are done: adding of a discussion about the slip-rate used in the model, the uncertainties and the output of the models, and improvement the figures.”

We thank the reviewer for the encouraging statements. Details of the changes we made are summarized below.

1. GPS does not provide slip rates for faults. Geodetic slip rates for major block-bound structures are deduced from elastic block models.

As suggested by the reviewer, mentioned sentence is changed as follows: “Past studies based on GPS measurements (McClusky et al. 2000; Meade et al., 2002; Armijo et al., 2002; Reilinger et al., 2006) suggest a 22 ± 3 mm/yr dextral motion along the major block-bounding structures of the NAFZ, with more than 80% being accommodated along the northern branch.” Page 5- Lines 1-4.

2. “Slip rate of 19 mm/year is assigned to these segments of the northern strand and 6 mm/year is assigned to Geyve-Iznik Fault based on the values proposed by Stein et al. (1997) with slight modifications due to catalogue seismicity.” Why is there a need for modification of the slip-rate?

Mentioned sentence was not clear enough to explain the applied procedure. In the “moment-balanced” seismic source models, the magnitude recurrence model parameters given in Eq. 4 (Page 10) such as the annual slip rate, b-value, etc. are tested for consistency with the rate of earthquakes associated with the rupture system. These graphs for all rupture systems are given in Figure 4. Eq. 1 shows that the annual slip rate directly increases the accumulated seismic moment; therefore, increasing the annual slip rate moves the red broken lines in Figure 4 upwards. The slip rate participation among the northern strand of NAFZ and Geyve-Iznik fault was given as 16 mm/yr and 9 mm/yr in Stein et al. (1997). However, we achieved a better fit with the associated seismicity of Izmit rupture system by increasing the share of the northern strand of NAFZ to 19 mm/yr. This value is also in good agreement with the annual slip rate given in Murru et al. (2016): they have adopted 20±2 mm/yr based on the proposals of Flerit et al. (2003) and Ergintav et al. (2014). We changed that sentence to clarify this issue (Page 6, Lines 10-14).

3. “Since the contribution of Düzce Fault to the total slip is around 33% to 50% (Ayhan et al. 2001)”. What is the final contribution chosen here and why? Ayhan et al., 2001 states that analysis of GPS data suggest something different, that up to 10 mm/yr are accommodated on the Düzce-Karadere strand of the NAF [Ayhan et al., 1999]. Please keep original reference when possible and explain how catalogue seismicity modifications led you to propose different slip rates for these two fault strands.

As mentioned by the reviewer, Ayhan et al. (2001) suggested that up to 10 mm/yr of the motion is accommodated on the Düzce-Karadere strand of the NAF. We also utilized the same annual slip rate of 10 mm/yr for Düzce_1, Düzce_2 and Karadere segments without any modifications based on the catalogue. Related text in Page 6 (Lines 18-20) is now updated, citing Ayhan et al (2001).
4. Could you please compare your slip rate estimates with more recent findings? E.g. Ergintav, 2014 gives 10-15 mm/yr for the Çınarcık Basin fault PIF vs the 19 mm/yr with no uncertainty used in this study; < 2 mm/yr for the Central Marmara region vs the 19 mm/yr with no uncertainty used in this study.

The slip rate estimate given in Ergintav et al. (2014) for the Prince Island Fault and Çınarcık Basin is 15±2 mm/year (page#5784 of the original reference). Murru et al. (2016) distributed the annual slip rate of 17 mm/year among two parallel branches in this zone; 14±2 mm/year for Çınarcık segment and 3±1 mm/year for the South Çınarcık segment based on the recent works of Ergintav et al. (2014) and Hergert and Heidbach (2010). Therefore, the slip rate value that we have used on the horizontal plane is identical to these recent estimates (Figure 1d). The slip rate given for the Central Marmara Fault by Ergintav et al. (2014) (2 mm/year) is unusually low compared to the previous estimates and may be suffering from the sparsity of the network and GPS coverage on the north shores of Marmara Sea as mentioned by the authors (page#5786). For this rupture system, the annual slip rate we adopted (19±2 mm/year) is in good agreement with the proposal of Murru et al. (2016) (18±2 mm/year) and with the seismicity rates based on instrumental earthquake catalogue (please refer to Figure 4b). The text given here is added to Pages 6-7, Lines (31-10).

5. Table 1 please add original references used to estimate slip rates, add associated uncertainties and in the text justify your choice of slip rate with respect to the many alternative interpretations.

Table 1 is modified as suggested by the reviewer. New Table 1 now includes the references for adopted slip rates and uncertainty in the published slip rate values. Additionally, we modified the SSC logic tree to include the epistemic uncertainty in the slip rates and changed the caption of Table 1 accordingly.

6. The article targets to present “fully-documented and ready to use fault based SSC” (P1L18) which is a good way to share hazard model information. This approach deserves to be promoted in the seismic hazard community. Unfortunately, with this state of the paper, it is most possible to use the results for a reader in order to run a hazard calculation. The geometry of the faults and the background earthquake rates are provided in the supplements but the earthquake rate on faults is absent. Authors should provide these rates for the full logic tree described in this study.

Thank you for supporting the open access policy for the seismic source models. Typically, the hazard codes do not need the earthquake rates on the fault. The magnitude PDF among the predefined models in the code is selected (in our case this is the Youngs and Coppersmith (1985) composite model), magnitude PDF parameters should be entered (in our case the b-value, M_{min}, and M_{char}) and the earthquake rates are implicitly calculated by the hazard code based on the provided logic tree for each seismic source (in our case for each rupture source). Nevertheless, following sentences are added to the manuscript and the earthquake rates are now provided in the electronic supplement. “The hazard analyst can incorporate the full rupture model and the complete logic tree provided in this manuscript to most of the available hazard codes without explicitly calculating the earthquake rates. In case that the earthquake rate has to be incorporated to the hazard code; the earthquake rates for each branch of the logic tree given in Electronic Supplement#3 can be used.” (Page 14, Lines 16-19).

7. Furthermore, the authors should acknowledge the limitation of their model and the uncertainties that remained unexplored in their logic tree (fault segmentation, fault geometries, slip-rate, scaling law used...) for future user to be able to use their work and run a complete and critical hazard assessment for the city of Istanbul.

8. A logic tree is presented, with the exploration of several branches (b values, M_{max}) but the results of the logic tree and the influence of each parameters is not exposed. A Discussion part should be added to the article in order to discuss the hazard model, to compare how it perform against the data (modeled seismic rate vs earthquake catalogue), discuss the issue of double counting, and to compare against the other seismic hazard model discussed in the intro. The limits of the models need to be clearly discussed as well. For example, the model allows multi-fault ruptures but the boundary of each system is based on the past
earthquake rupture (Parson 2004) and the possibility of an earthquake passing from one system to another is not discussed.

Following the suggestions of the reviewer, we added a new Discussion section that deliberates the SSC model parameters and the epistemic uncertainty of the model based on the comparison of the source model fractals of each rupture source with the observed rates of associated earthquakes (Section #6). We added a paragraph to the newly introduced Section#6 that discusses the uncertainties remained unexplored in the provided logic tree. We also shortly discussed the reason why the fault-to-fault rupture concept of UCERF3 is not utilized in the proposed model at the end of this section.

Additionally, we added the following sentence to the main text: “During the calculations of the smoothed seismicity rates, the earthquakes in buffer zones are not included in smoothing (and not double-counted). The buffer zones are only used to “associate” the earthquakes with the fault zones and collapse the earthquakes to the vertical fault planes. (Page 12 – Lines 18-21)”.

9. The issue of Mmax in the background zone should be discussed in greater detail: please refer to the extensive literature, UCERF3 in particular, for a more up to date discussion on this issue.

We appreciate the suggestion. Moschetti et al. (2015) mentioned that the development of the maximum magnitude (Mmax) model for shallow crustal seismicity in the Western United States benefits from the large set of regional earthquake magnitudes from the historical and paleoseismic records; however, the background seismicity model accounts for earthquake ruptures on unknown faults; therefore, the Mmax distribution must reflect the range of possible magnitudes for these earthquakes. We adopted a similar approach using the fault segments of the southern strand of NAFZ documented in Murru et al. (2016) and calculated the characteristic magnitude for each segment with Wells and Coppersmith (1994) magnitude-rupture area relation. Based on the estimations of characteristic magnitude of earthquakes that may occur on the southern strand of NAFZ, the logic tree for Mmax of the background zone is modified (Table 6). Related discussion is added to Page 12, Lines 25-32.

10. Why use the term “planar seismic source” instead of “fault source”?

Planar seismic source is preferred to emphasize the third dimension of the fault plane.

Reviewer #1 – Specific Comments:

Language edits in all sections are acknowledged. We are indebted for the careful grammar review. Some of the issues pointed out by the reviewer are resolved by adding further explanations throughout the text (please refer to the annotated manuscript). We would like to add a few remarks for addressing some of the specific comments:

1. The references to the fault maps and satellite images used by Gülerce and Ocak (2013) are provided in the original reference; therefore, the details are not elaborated here due to page limitations.

4-32 Here the author that the segment 1 of the Duzce fault is connected with the Izmit system. However, they cannot rupture together. Why so?

In 1999 earthquakes, these two fault systems (Kocaeli and Düzce) were ruptured in two different episodes. A possible explanation of the separate ruptures in different episodes would be the development of the restraining bend along Karadere Segment, which probably locked up the eastern termination of Izmit rupture. Harris et al. (2002) proposed that the rupture of 1999 Izmit earthquake was stopped by a step-over at its eastern end (Mignan et al., 2015). Within the scope of this study, we believe that it is safe to assume the same rupture pattern of 1999 earthquakes based on current information. However, we added the sentences above to the manuscript (Page 4, Lines 24-29).

3. 9-6 Why this choice of adding 0.25 and 0.5 to the Mmax define using Wells and Coppersmith 1994? Doesn’t make the new Mmax not fitting the scaling law? Why not explore the uncertainty given by Well and Coppersmith or another scaling law in order to grasp the epistemic uncertainty?
We thank the reviewer for pointing that out. We changed the structure of the maximum magnitude logic tree using two different magnitude scaling relations proposed by Wells and Coppersmith (1994) and Hanks and Bakun (2014). The M_{char} values calculated using both equations are quite close to each other and the absolute value of the difference is smaller than 0.13 in magnitude units. To grasp the epistemic uncertainty, average of the M_{char} value from both scaling laws are utilized in the center of the logic tree with 50% weight and both the $M_{\text{char}} -0.15$ and $M_{\text{char}} +0.15$ values are included by assigning 25% weight (Table 6).

4. 9-20 is the moment-balancing the same for all the branches of the logic tree? What is the branch presented in figure 4?

No, it is not the same for all branches of the logic tree. We modified the caption of Figure 4 to indicate the branch of the logic tree presented in each part figure.

5. 9-22 the “best fit” between the rate in the catalogue and the weighted average is defined in which way? It seems that the fit with the smaller magnitude is preferred according to fig 4 because of the large uncertainty on the rate of large magnitude earthquake. Why the authors didn’t choose to use an historical earthquake catalogue in order to improve the estimation of the rate of larger earthquakes?

The best fit between the rates of the events in the instrumental catalogue and the weighted average of the magnitude recurrence model is achieved by visual interpretation. To achieve a good fit, the seismic source modeler needs to understand the contribution of the magnitude recurrence model parameters to the red broken line in different magnitude ranges. For example, the b-value significantly affects the small magnitude portion of the curve since the Youngs and Coppersmith (1985) magnitude PDF is utilized. Please remind that the b-value is calculated based on the same catalogue but for a larger region when compared to the buffer zone around the fault. Defining a large number of sub-segments for a rupture system also increases the cumulative rate of small magnitude events. The good fit in the small magnitude range of Figure 4 shows that: i) the b-value calculated using the larger zone is compatible with the seismicity associated with the planar source, ii) utilized segmentation model is consistent with the relative rates of small-to-moderate and large events, and iii) annual slip rate is compatible with the seismicity over the fault. As the reviewer mentioned, the large magnitude rates are poorly constrained since the catalogue used herein only covers 110 years and that time span is obviously shorter than the recurrence rate for the large magnitude event. Hecker et al. (2013) explains that by the low rates of the large magnitude events: “rates of large-magnitude earthquakes on individual faults are so low that the historical record is not long enough to test this part of the distribution” and suggest using the “inter-event variability of surface-rupturing displacement at a point as derived from geologic data sets” to test the upper part of the earthquake-magnitude distribution. Discussion given above is added to the manuscript (Page 11, Lines 15-27).

6. 9-29 higher weight is attributed to single rupture than to multiple fault rupture. What is the basis for this assumption since the distribution used (Youngs and Coppersmith) already predicts more small magnitude earthquakes than large ones? Is this argument stronger than the fit to the data in the weight determination?

Both truncated exponential model and the Youngs and Coppersmith (1985) model assumes more small magnitude events than the large magnitude events. The difference lies in the relative rates of small-to-moderate and large magnitude earthquakes (for further details please refer to Hecker et al., 2013 and Gülerce and Vakilinezhad, 2015). However, the ratio of these rates is the same for the single-segment rupture “source” and for the multiple-segment rupture “source” and this ratio is irrelevant with the weights assigned to the rupture “scenarios”. Higher weights attributed to the single-segment rupture scenarios than the multiple-segment rupture scenarios reflect the preference of the seismic source modeler in addition to the agreement with the associated seismicity. As Figure 4 implies, this preference did not contradict with the cumulative rates of earthquakes associated with each rupture system.

7. 10-4 define “not associated”. What is the size of the buffer zone? And why? Please state whether the background zone and the fault sources should be superposed in the PSHA calculations. (Not clear in figure 5)
Size of the buffer zone is 7 km in each side of the fault line based on the visual interpretation of the spatial distribution of the earthquakes around the fault lines. We assumed that the earthquakes within the buffer zones are “associated” with the fault and the ones that are outside of the buffers are “not associated”. Following sentences are added for clarification (Page 12 – Lines 18-21): “During the calculations of the smoothed seismicity rates, the earthquakes in buffer zones are not included in smoothing (and not double-counted). The buffer zones are only used to “associate” the earthquakes with the fault zones and to collapse the earthquakes to the vertical fault planes. Therefore, the background source and the fault sources can be superposed in the PSHA calculations.”

8. 10-21 “no active fault has been reported”. Faults in the vicinity of Istanbul have been described in other studies. See Diao et al 2016 (Secondary Fault Activity of the North Anatolian Fault near Avcilar, Southwest of Istanbul: Evidence from SAR Interferometry Observations).

Greater Istanbul Municipality had conducted a trench study on the KL Fault of Diao (2016) in order to verify its recent activity; however, they found no evidence of Holocene activity. Avcilar region is dominated by active and extensive landslides and surface creep activities as Diao et al. (2016) suspected.

9. 10-30 “previous SSC models”; a comparison on the modelled rate will improve the quality of the article.
10. 11-18 this interesting comparison with other model could be done in the discussion part in greater depth.

We appreciate the comments and understand the importance of the comparison of the earthquake rates proposed in here with the previous literature. Unfortunately, previous publications did not provide enough information on earthquake rates for doing this comparison. A similar statement is added to the discussion section to underline the importance of open-access seismic source models in PSHA.

11. Figure 1: A color code for each rupture system could be used. The full name of each rupture system should be indicated on the map to help the reader. What is the number between brackets?

The numbers between brackets were segments lengths. Figure 1 is modified as suggested and the numbers (segment lengths) are deleted for clarity (instead the segment lengths are given in the Table 1) and a color code for each rupture system is introduced.

Reviewer #2 – General comments.

“This is a technically-solid, well-documented paper describing the implementation of a seismic source model for the North Anatolian Fault Zone. The paper is not a research paper, and therefore does not really attempt to advance new ideas or change the way the earthquake process is understood in the region. Instead, it simply describes a segmented seismic source model and the calibration of parameters of interest (e.g. Gutenberg-Richter $A+B$ values) to the faults. Whether this is appropriate for this journal or not, I cannot say definitively. It would have been nice to see a little more scientific research. However, the work that is done is of good quality, quite well documented and no doubt of use and interest to the community.”

We thank the reviewer for the encouraging statements. The state-of-the-art in seismic hazard assessment and seismic source characterization models are generally published in consultancy reports and typically not easily accessible for the earthquake engineering practitioners. Abrahamson (2000) proposed that one of the sources of the problems leading to the large variability in the seismic hazard practice is the lack of well-written, easy to understand papers on the topic of seismic hazard assessment. With the help of the review comments, the manuscript is significantly improved; therefore, we hope that the reviewer would see the scientific and/or practical contribution of the updated manuscript.

My only technical concerns are that the B values estimated for the faults are quite low (≈ 0.7). This is may be due to catalog completeness issues, or overly aggressive declustering that removes too many events. Though the methods used to decluster the catalog are mentioned, there are no statistics on the number or percentage of events removed or other information that would help with this sort of diagnostics. Alternately, it is possible that the NAFZ does have a very low B value. This would be quite notable, and worthy of more scientific
The b-value estimated for Zones 1-3 varies between 0.68-0.76. We understand that the estimated values are relatively small when compared to the b-values estimated for large zones (b≈1); however, our findings are consistent with the current literature. Şeşetyan et al. (2016) provided a thorough analysis of the b-value for the whole Turkish territory and proposed that b=0.77 for Central Marmara region and b=0.67 for North Anatolian Fault Zone (please refer to Figure 15 of Şeşetyan et al., 2016). The catalogue completeness intervals used in Şeeşetyan et al. (2016) and in this study for 4.7<M<5.7 earthquakes are exactly the same; therefore, we do not expect that the b-values estimated here depends on the catalogue completeness intervals utilized in this study. The small differences in the b-values proposed by Şeşetyan et al. (2016) and the b-values estimated in this study due to the geometry of the selected zones and the differences in the compiled catalogues. In addition, the b-value used by Moschetti et al. (2015) for Western United States (b=0.8) is not very different than our estimates. Discussion given above is added to the manuscript (Pages 8-9, Lines 29-2).

The reviewer suggested that the estimated b-value might be affected from the aggressive declustering that removes too many events. This issue is thoroughly discussed in Güner et al. (2015) and Azak et al. (2017), showing that the declustering methodology utilized in this study (Reasenberg, 1985) results in higher estimates of the b-value when compared to the other declustering methods. We provided additional details on the declustering at Page 7 (line 31).

Finally, we would like to underline that the b-value only controls 6% of the released seismic moment by the exponential tail of the implemented composite magnitude PDF (Youngs and Coppersmith, 1985), therefore it has no substantial effect on the hazard (Gülerce and Vakilinezhad, 2015).

References given here (but not included in the manuscript):

Planar Seismic Source Characterization Models Developed for Probabilistic Seismic Hazard Assessment of Istanbul

Zeynep Gülerce1, Kadir Buğra Soyman1, Barış Güner2, and Nuretdin Kaymakçı3

1Department of Civil Engineering, Middle East Technical University, Ankara, 06800, Turkey
2 Department of Nuclear Safety, Turkish Atomic Energy Authority, Ankara, 06510, Turkey
3 Department of Geological Engineering, Middle East Technical University, Ankara, 06800, Turkey

Correspondence to: Zeynep Gülerce (zyilmaz@metu.edu.tr)

Abstract. This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of North Anatolian Fault Zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of 1999 Kocaeli and Düzce earthquakes, Central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g. b-value, maximum magnitude, \textit{slip rate}, weights of the rupture scenarios) is considered whereas; the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully-documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.

1 Introduction

North Anatolian Fault Zone (NAFZ), one of the most active fault systems in the world, extends for more than 1500 kilometers along Northern Turkey (Figure 1b). NAFZ was ruptured progressively by eight large and destructive earthquakes ($M_w>6.5$) in the last century. Earthquakes that occurred between 1939 and 1967 had ruptured approximately 900 kilometers of a uniform trace in the east whereas; the 1999 Kocaeli and Düzce Earthquakes ruptured a total fault span of approximately 200 kilometers where the NAFZ is divided into a number of branches in the west. Northern strand of NAFZ is submerged beneath the Marmara Sea to the west of the 1999 Kocaeli Earthquake rupture zone, introducing major uncertainties to segment location, continuity, and earthquake recurrence (Figure 1a). In 2004, Parsons collected a catalog of large magnitude ($M>7$) earthquakes occurred around the Marmara Sea for the time period of A.D. 1500 - 2000. Based on the rupture zones of these large magnitude events, four main segments for the northern strand of NAFZ around Marmara Sea were proposed by Parsons (2004): (1) Ganos segment that combines the rupture zones of August 1776 and 1912 earthquakes, (2) Prince
Parsons (2004) noted that the 10 May 1556 (Ms=7.1), 2 September 1754 (M = 7.0), and 10 July 1894 (M = 7.0) earthquakes were located assigned locations in the Çınarcık basin or on mapped normal faults in the southern parts of Marmara Sea. These events were not allocated to the other segments in order not to violate the inter-event time calculations, although they could have occurred on the northern strand of NAFZ.

The fault segmentation model proposed by Erdik et al. (2004) was similar to the segmentation model proposed by Parsons (2004) in terms of the fault geometry; however, smaller segments were preferred. Erdik et al. (2004) noted that “the Main Marmara fault cuts through Çınarcık, Central and Tekirdağ basins, follows the northern margin of the basin when going through the Çınarcık trough in the northwesterly direction, makes a westwards kink around south of Yeşilköy until it reaches the 1912 Murefte–Şarköy rupture”. All of these fault lines were interpreted as separate fault segments in the segmentation model. Erdik et al. (2004) considered multi-segment ruptures by assigning lower probabilities to “cascading ruptures”. Based on the rupture zones of previous large magnitude events, multi-segment ruptures involving the segments in connection with the 1999 Kocaeli earthquake and 1509 earthquakes were included in the rupture forecast. Even though multi-segment ruptures were considered, the relative probabilities of the multi-segment ruptures vs. single-segment ruptures were not systematically defined in Erdik et al. (2004). This seismic source model was updated for the Earthquake Hazard Assessment for Istanbul Project by OYO (2007). The fundamental differences between the Erdik et al. (2004) and OYO-2007 models are: (1) small segments around Marmara Sea used in Erdik et al. (2004) model were combined to form bigger segments in OYO-2007 model; (2) fault segments that represent the floating earthquakes were defined. The segmentation model used in OYO-2007 source characterization is very similar to the segmentation model proposed by Parsons (2004).

The fault segmentation model used by Kalkan et al. (2009) includes significant differences in terms of the fault geometry with the Erdik et al. (2004) model, even though both studies used the active fault maps of Şaroğlu et al. (1992) for inland faults and the fault segmentation model from Le Pichon et al. (2003) and Armijo et al. (2005) for the segments beneath the Sea of Marmara. On the other hand, the magnitude recurrence models used by Erdik et al. (2004), in OYO-2007 model, and by Kalkan et al. (2009) were rather similar. In all of these studies, linear fault segments were modeled (fully or partially) by the characteristic model proposed by Schwartz and Coppersmith (1984); therefore, only large magnitude events were associated with the fault segments. Additionally, a background source representing the small-to-moderate magnitude earthquakes (earthquakes between 5 and 6.5-7 depending on the study) were added to the source model and the earthquake recurrence of the background source was modeled using a double-truncated exponential magnitude distribution model. Either the Poisson (Erdik et al., 2004; Kalkan et al., 2009) or time dependent renewal (Brownian Passage Time Model, Ellsworth et al., 1999) model (Erdik et al. 2004) was preferred chosen to model the earthquake recurrence rates for linear segments; whereas the Poisson distribution was used to model the recurrence rates of the background source in these studies.
Recently proposed SSC models for the western segments of NAFZ (Gülerce and Ocak, 2013 and Murru et al., 2016) are more complicated in terms of the segmentation models, magnitude recurrence relations, and estimation of the activity rates. In the Gülerce and Ocak (2013) SSC model, length of segments and the segmentation points were determined and incorporated with the help of then available fault maps and traced source lines on the satellite images from recent available information. Planar fault segments were defined and the composite magnitude distribution model (Youngs and Coppersmith, 1985) was used for all seismic sources in the region to properly represent the characteristic behavior of NAFZ without an additional background zone. Unfortunately, the seismic source model proposed by Gülerce and Ocak (2013) cannot be directly implemented in the PSHA for Istanbul since the model does not include the fault segments on the west of 1999 Kocaeli Earthquake rupture zone. Geometry of the fault segments defined in Murru et al. (2016) is generally similar to the Erdik et al. (2004) model; however, the complete set of parameters required for a fault-based PSHA analysis (e.g. slip rates, fault widths, rupture models and rates, parameter uncertainties, etc.) was provided in Murru et al. (2016).

The objective of this study is to provide an updated and properly documented fault-based SSC model to be used in the PSHA studies in Istanbul. A significant portion of the tectonic database is acquired from the Updated Active Fault Maps of Turkey that was published by General Directorate of Mineral Research and Exploration (Emre et al., 2013) (accessed through http://www.mta.gov.tr/v3.0/hizmetler/yenilenmis-diri-fay-haritalari). The 1/250.000 scale Çanakkale (NK 35-10b), Bandırma (NK 35-11b), Bursa (NK 35-12), Adapazarı (NK 36-13), Bolu (NK 36-14), and Istanbul (NK 35-9) sheets of Updated Active Fault Maps of Turkey were accessed and digitized. The seismological database is taken from the Integrated and Homogeneous Turkish Earthquake Catalog published by Kandilli Observatory and Earthquake Research Institute (Kalafat et al., 2011). Seismotectonic information related to the active faults and the fault systems that are available in these databases and in the current scientific literature are used in combination with the segmentation models proposed by Gülerce and Ocak (2013) and Murru et al. (2016) to define the rupture systems. Fault segments, rupture sources, rupture scenarios, and fault rupture models are determined using the terminology given in Working Group of California Earthquake Probabilities (WGCEP-2003) report and multi-segment rupture scenarios are considered in a systematic manner. Events in the seismological database are attributed to the rupture systems and the logic tree weights for the rupture scenarios are determined by comparing the accumulated seismic energy-moment due to the geological constraints (rupture dimensions and slip rate) with the seismic-moment release due to associated seismicity. Different than the previous efforts, the PSHA inputs (e.g. coordinates of the fault segments, logic tree branches and corresponding weights) are properly documented; therefore, the SSC model presented here can be directly implemented in the future site-specific PSHA studies in Istanbul.

2 Fault Segmentation Models, Rupture Systems, and Partitioning of Slip Rates

The SSC model consists of one background source (defined in Section 5) and four distinct (non-overlapping) rupture systems that are defined by considering the rupture zones of previous large magnitude earthquakes documented by Parsons (2004) on the northern strand of NAFZ. We note that all sub-segments in the defined rupture systems except for North and
South Çınarcık Segments are assumed to be near vertical with right-lateral slip as suggested by geological, seismological, and GPS data. The segmentation and the slip rate partitioning models are not yet well-established for the fault segments on the south of the Marmara Sea; therefore, these segments are not modelled as planar seismic sources in this SSC model.

2.1 Izmit and Düzce Rupture Systems:

Location, geometry, and slip distribution of the rupture zones of 1999 Kocaeli and Düzce earthquakes have been studied extensively after these events (e.g. Barka et al., 2002; Langridge et al., 2002; Akyüz et al., 2002). The surface rupture of the 1999 Kocaeli earthquake extended for almost 165 km and 4 distinct segments were ruptured (Hersek Segment, Gölcük-Karamürsel-Izmit Segment, Sapanca-Akyazı Segment, and Karadere Segment as given in Barka et al., 2002). The co-seismic fault was terminated at the western end of the rupture, very near to the eastern side of the Marmara Sea (Ergintav et al., 2014). The northern strand of NAFZ that delimits the boundary between the Marmara Sea and Çınarcık Block did not rupture during 1999 Kocaeli Earthquake (Segment 3 Çınarcık Segment in Figure 1a). Mert et al. (2016) argued that the northern strand of NAFZ is observed as a single continuous fault strand along İzmit Bay and at its entrance to the sea southeast of Istanbul. We included the North Çınarcık segment (Segment 3) in the Izmit rupture system since it is the western extension of the Hersek-Gölcük Segment one of the faults that developed in response to the bending of the main strand of the NAFZ towards NW (Prince Islands Fault-PIF) and its motion must be controlled by the motion of the Izmit Segment. This bending results in a releasing bend and a slip re-distribution as dextral motion parallel to the main strand and normal motion perpendicular to the Çınarcık Segments (Figure 1d). As seen in Figure 1e, the vertical throw of the Northern Çınarcık Segment is almost twice of the throw of the South Çınarcık Segment, which is the conjugate fault of the North Çınarcık segment. The dip of the North Çınarcık Segment is assumed to be 70°SW as suggested by Laigle et al. (2008). The Izmit rupture system proposed here consists of five (Hersek-Gölcük, İzmit, Sapanca-Akyazı, Karadare and North Çınarcık) sub-segments. Düzce Earthquake produced 40-km-long surface rupture zone; however, there is a 4-km releasing step-over around Eften Lake (Akyüz et al. 2002). Therefore, a 2-segment model (Segments D1 and D2) is established for the rupture zone of the Düzce earthquake (Figure 1a). The segments and segment lengths for the Izmit and Düzce rupture systems are given in Table 1. In 1999 earthquakes, these two rupture systems (Kocaeli and Düzce) were ruptured in two different episodes. A possible explanation of the separate ruptures in different episodes would be the development of the restraining bend along Karadere Segment, which probably locked up the eastern termination of İzmit rupture. Harris et al. (2002) proposed that the rupture of 1999 İzmit earthquake was stopped by a step-over at its eastern end (Mignan et al., 2015). In this study, we assumed the same rupture pattern of 1999 earthquakes and do not include a rupture scenario that combines these two rupture systems in the rupture forecast.

2.2 Ganos/Saros Rupture System:

The ENE-WSW trending Ganos Fault is the fault segment at the westernmost section of NAFZ that generated the 9 August 1912 Mürefte (Ganos) earthquake. Magnitude of this earthquake was estimated from historical catalogues and field
observations as $M_s = 7.3 \pm 0.3$ (by Ambraseys and Jackson, 2000) and $M_w = 7.4$ (by Altunel et al., 2004), respectively (Aksoy et al., 2010). A second large event was occurred on 13 September 1912 ($M_s = 6.8 \pm 0.35$ and $M_w = 7.4$ as given in Ambraseys and Jackson, 2000). Ambraseys and Jackson (2000) suggested a 37-km-long co-seismic rupture for this large second shock. Aksoy et al. (2010) used the duration of the recorded waveforms to estimate the rupture lengths of 1912 events: assuming the rupture width as 15-20 km, estimated values were 130 ± 15 km and 110 ± 30 km for August 9 and September 13 events, respectively. According to Aksoy et al. (2010), co-seismic surface ruptures were visible along the 45 km on-land section of this segment. Supporting the estimations based on waveforms by aerial photographs, satellite imagery, digital elevation models, bathymetry, and field measurements; Aksoy et al. (2010) proposed 120 \pm 30 km-long fault rupture for the August 9, 1912 event. Murru et al. (2016) defined two segments covering the 120 \pm 30 km long fault rupture of the 1912 Ganos Earthquake: a 74 km-long segment that includes the on-land section and a 46 km-long off-shore segment (Segments 6 and 7 in Figure 1a). The maximum seismogenic depth of these segments was assumed to be 15 km on the basis of the locking depth suggested by mechanical best fit modelling of GPS data (Flerit et al., 2003) and by the depth extent of instrumental seismicity (Gürbüz et al., 2000; Özalaybey et al., 2002; Örgülü and Aktar, 2001; Pınar et al., 2003). A similar segmentation model is adopted in this study by implementing minor changes in the sub-segment lengths as shown in Table 1.

2.3 Central Marmara Rupture System:

The northern strand of the NAFZ forms a major transtensional NW-SE right bend under the Sea of Marmara at the Çınarcık trough (Murru et al., 2016). The fault trace follows the northern margin of the Marmara Sea and connects the complex Central Marmara and Tekirdağ pull-apart basins, before merging into the NE-SW striking Ganos fault on land (Wong et al., 1995; Okay et al., 1999; Armijo et al. 2002; Le Pichon et al., 2001; Yaltırak, 2002; McNeill et al., 2004; Murru et al., 2016). Building the segmentation model for the off-shore segments of NAFZ (also known as the Central Marmara Fault-CMF) is especially difficult because the fault traces are not directly observable (Aksu et al., 2000; Imren et al., 2001; Le Pichon et al., 2001; Armijo et al., 2002, 2005; Pondard et al., 2007). Murru et al. (2016) noted that the segments under Marmara Sea are bounded by geometric fault complexities and discontinuities (e.g., jogs and fault bends) that can act as barriers to rupture propagation (Segall and Pollard, 1980; Barka and Kadinsky-Cade, 1988; Wesnousky, 1988; Lettis et al., 2002; An, 1997) and proposed two separate segments for CMF. We adopted the fault geometry and the segments proposed by Murru et al. (2016) to build the 2-segments Central Marmara rupture system (see Figure 1a for details). As mentioned by Murru et al. (2016), this model is consistent with the segmentation model proposed by Armijo et al. (2002) and in good agreement with the observed Marmara Sea basin morphology and geology (Flerit et al., 2003; Muller and Aydin, 2005; Carton et al., 2007; Pondard et al., 2007).
2.4 Annual Slip Rates:

Past studies based on GPS measurements (McClusky et al., 2000; Meade et al., 2002; Armijo et al., 2002; Reilinger et al., 2006) suggest a 22 ± 3 mm/yr dextral motion along the major block-bounding structures of the NAFZ, with more than 80% being accommodated along the northern branch. Past studies based on GPS measurements and field research performed for the region (McClusky et al., 2000; Meade et al., 2002; Reilinger et al., 2006) showed that the total annual slip rate on NAFZ is approximately 25 mm/year. However, the seismic moment accumulating on NAFZ is shared by parallel fault strands; therefore, slip rates should be participated among individual segments. Moreover, these studies suggested that more than 80% of the annual slip rate is accommodated along the northern branch. On this branch, the segments that formed the west and central parts of Izmit rupture system (Segments 3, 2_1, 2_2 and 2_3 in Figure 1a) share the total slip rate of 25 mm/year with Geyve-Iznik Fault. The slip rate participation among the northern strand of NAFZ and Geyve-Iznik fault was given as 16 mm/yr and 9 mm/yr in Stein et al. (1997). However, we achieved a better fit with the associated seismicity of Izmit rupture system by increasing the share of the northern strand of NAFZ to 19±2 mm/yr (please refer to Section 4 for further details). This value is also in good agreement with the annual slip rate given in Murru et al. (2016): they have adopted 20±2 mm/yr based on the proposals of Flerit et al. (2003) and Ergintav et al. (2014). The slip rate of 19 mm/year is assigned to these segments of the northern strand and 6 mm/year is assigned to Geyve-Iznik Fault based on the values proposed by Stein et al. (1997) with slight modifications due to catalogue seismicity.

Similarly, the total slip rate of 25 mm/year is distributed over the eastern segment of NAFZ Southern Strand (Segment 1 in Figure 1a) and the segments of Düzce Rupture System (D1 and D2). Ayhan et al. (2001) suggested that up to 10 mm/yr of the motion is accommodated on the Düzce-Karadere strand of the NAF. We also utilized the same annual slip rate of 10±2 mm/yr for Düzce_1, Düzce_2 and Karadere segments without any modifications (Table 1). Since the contribution of Düzce Fault to the total slip is around 33% to 50% (Ayhan et al. 2001), the slip rate of 15 mm/year is assigned to NAF_S1 (Abant) Segment and 10 mm/year is assigned to D1 and D2 segments. For consistency, same slip rate (10 mm/year) is assigned to the segments of İzmit rupture system that are connected to the Düzce fault (Segment 1). It is notable that the segment geometry given in Gülercce and Ocak (2013) SSC model is modified according to Emre et al. (2013) for this study, however, slip rate participation model remained unchanged.

The mean slip rates adopted for Central and West Marmara sub-segments (19 mm/yr) is consistent with the neighbouring sub-segments of the İzmit and Ganos/Saros rupture systems. Ergintav et al. (2014) noted that the PIF segment (Segment 4) is actively accumulating strain and has not experienced a large event since 1766, making it the most likely segment to generate a M > 7 earthquake, and hence the most imminent seismic hazard to Istanbul and other cities around the Sea of Marmara. Even if lower geodetic slip rate estimates for this segment is available in the literature (Hergert and Heidbach, 2010), the slip rate of 19 mm/year representing the upper bound of these estimates is adopted for Segment 4. The slip rate estimate given in Ergintav et al. (2014) for the Prince Island Fault and Çınarcık Basin is 15±2 mm/yr. Murru et al. (2016) distributed the annual slip rate of 17 mm/yr among two parallel branches in this zone; 14±2 mm/yr for Çınarcık segment and 3±1 mm/yr for
South Çınarcık segment based on the recent works of Ergintav et al. (2014) and Hergert and Heidbach (2010). Therefore, the slip rate value that we have used on the horizontal plane (17 mm/yr) is identical to these recent estimates (Figure 1d). In our analysis, 6±2 mm/yr extension is assigned to the North Çınarcık segment while 3±2 mm/yr is assigned to the South Çınarcık Segment. Since the North Çınarcık Segment was ruptured during the 17 August 1999 earthquake, we assumed that all the strike-slip motion was taken-up by the North Çınarcık Segment; therefore, all of the 17 mm/yr dextral motion is assigned to the North Çınarcık Segment. The slip rate given for the Central Marmara fault by Ergintav et al. (2014) (2 mm/year) is unusually low compared to the previous estimates and may be suffering from the sparsity of the network and GPS coverage on the north shores of Marmara Sea as mentioned by the authors. For this rupture system, the annual slip rate we adopted (19±2 mm/yr) is in good agreement with the proposal of Murru et al. (2016) (18±2 mm/yr) and with the seismicity rates based on instrumental earthquake catalogue (Figure 4b).

The slip rate given in the SSC model of Murru et al. (2016) is directly adopted for the Ganos sub-segment whereas; the slip rate partitioned in between the North Saros and South Saros sub-segments in Murru et al. (2016) is concentrated over the North Saros sub-segment (Table 1). This is because the southern segment is developed in response to transtension exerted by the curvilinear trace of northern segment (Okay et al., 2004), a mechanism somewhat similar to northern and southern Çınarcık segments proposed above. The slip rate assigned to the Ganos and Saros sub-segments is consistent with the recent GPS velocity profiles given in Hergert et al. (2011) and Ergintav et al. (2014). Table 1 summarizes the references for the utilized annual slip rates for each segment and the uncertainty related to the slip rate included in the logic tree.

3 Instrumental Earthquake Catalogue and Activity Rates of Earthquakes

Catalog of earthquakes documenting the available knowledge of past seismicity within the site region is a key component of the seismic source characterization for the hazard analysis. A very detailed review of the historical earthquakes and their rupture zones around the Marmara Sea region was documented by Parsons (2004). These earthquakes and the extension of their rupture zones are directly utilized in this study to define the sub-segments, rupture systems, and to calculate the mean characteristic magnitude values. The Integrated and Homogeneous Turkish Earthquake Catalog published by KOERI (Kalafat et al., 2011) including the events with $M_w > 4$ that occurred between 1900 and 2010 is employed to represent the instrumental seismicity in the region. It is notable that areal source zones (or polygons) are not utilized in the SSC model to estimate the activity rates; therefore, the maximum magnitude estimates and the PSHA results are not solely dependent on the collected catalogue. The mainshock-aftershock classification of the catalog (de-clustering) is performed and the aftershocks are removed from the dataset using the Reasenberg (1985) methodology in the ZMAP software package (Wiener, 2001). Reasenberg (1985) algorithm assumes a dynamically modeled (spatial and temporal) interaction zone centered on each earthquake. Earthquakes occurring within the interaction zone of a prior earthquake are considered as aftershocks, with minimum and maximum look ahead times of 1 and 10 days, and event crack radius of 10 km.
Catalog completeness analysis for different magnitude ranges is performed in order to achieve the catalogue completeness levels used in calculating the magnitude recurrence parameters. Cumulative rates of earthquakes larger than specific magnitude levels are plotted vs. years in order to examine the completeness of catalog as shown in Figure 2. For different cut-off magnitudes, the breaking points for the linear trends in the cumulative rate of events are examined and a significant breaking point is observed to be at 52 years from the end of the catalogue for magnitudes smaller than 4.5 and 5.0. Therefore, the catalog was assumed to be complete for 52 years for \(4.0 \leq M_w \leq 4.5 \) and \(4.5 \leq M_w \leq 5.0 \) earthquakes, respectively. Although the larger magnitude plots in Figure 2 suffer from the lack of data due to the truncation of the catalog, the catalog is assumed to be complete for the greater magnitudes for the whole-time span (110 years). The catalogue completeness intervals used in Şeşetyan et al. (2016) and in this study for \(4.7 < M < 5.7 \) earthquakes are consistent even if the compiled catalogues are different.

The magnitude-frequency relationship developed for each rupture system and the background zone is explained in the next section. Only one of the magnitude-frequency relationship parameters, the slope of the cumulative rate of events (as known as the b-value), is calculated based on the instrumental-compiled catalogue. We delineated three different zones for estimating the b-value, considering the temporal and spatial variability of this parameter as shown in Figure 1c. Zone 1 includes the Ganos/Saros and Central Marmara rupture systems, Zone 2 covers the Izmit and Düzce rupture systems, and Zone 3 is a larger area that includes both Zone 1 and 2. For each zone, the b-value is estimated using the maximum likelihood method provided in ZMAP software package. Figure 3 (a-c) shows the completeness magnitudes and the b-values for Zones 1, 2, and 3. Analysis results show that the b-value varies in between 0.68 and 0.74 for different rupture systems given in the previous section; whereas, the b-value for the large area covering whole system is equal to 0.76. Additionally, the b-values for each zone are estimated using the modified maximum likelihood method (Weichert, 1980) that takes into account the completeness of the catalog for different magnitude bins. The b-values calculated by Weichert (1980) method is approximately 5% higher than the maximum likelihood estimations of ZMAP for Zones 1 and 2, but for the larger zone (Zone 3), estimated b-values are almost the same in both methods (Table 2). To acknowledge the uncertainty in the b-value estimations, 30% weight is assigned to the zone-specific b-value calculated by ZMAP and the zone-specific b-value calculated using Weichert (1980) method each, and 40% weight is given to the regional b-value since the number of data in this zone is larger and the estimated b-value is statistically more stable. Finally, the b-value for the background zone (limits shown in Figure 5) is calculated as 0.81 by removing the earthquakes within the buffer zones. Uncertainty in the b-value of background zone is determined using the method proposed by Shi and Bolt (1982) and included in the logic tree (Table 2).

Estimated b-values are relatively small when compared to the b-values estimated for large areas \((b \approx 1) \); however, our findings are consistent with the current literature. Şeşetyan et al. (2016) provided a thorough analysis of the b-value for the whole Turkish territory and proposed that \(b=0.77 \) for Central Marmara region and \(b=0.67 \) for North Anatolian Fault Zone (Figure 15 of Şeşetyan et al., 2016). The small differences in the b-values proposed by Şeşetyan et al. (2016) and the b-values
estimated in this study are due to the geometry of the selected zones and the differences in the compiled catalogues. The b-value used by Moschetti et al. (2015) for Western United States (b=0.8) is not very different than our estimates.

4 Magnitude Recurrence Models – Seismic Moments

Seismic sources can generate varied sizes of earthquakes and magnitude distribution models describe the relative rate of these small, moderate and large earthquakes. The basic and the most common magnitude frequency distribution (MFD) is the exponential model proposed by Gutenberg and Richter (1944) (G-R). Since there is a maximum magnitude that the source can produce and a minimum magnitude for engineering interest, the G-R distribution is usually truncated at both ends and renormalized so that it integrates to unity. The truncated exponential distribution function MFD is given in Eq. (1):

\[f^M_{\text{TE}}(M) = \frac{\beta \exp(-\beta(M - M_{\text{min}}))}{1 - \exp(-\beta(M_{\text{max}} - M_{\text{min}}))} \]

where \(\beta = \ln(10) \times b - \text{value} \), \(M_{\text{min}} \) is the minimum magnitude, and \(M_{\text{max}} \) is the maximum magnitude. Youngs and Coppersmith (1985) proposed that the truncated exponential distribution is suitable for large regions or regions with multiple faults but in most cases does not work well for individual faults zones. Instead, individual faults may tend to rupture at what have been termed as “characteristic” size events and the alternative magnitude distribution for this case is the characteristic model proposed by Schwartz and Coppersmith (1984). In characteristic probability distribution function (PDF) MFD, once a fault begins to rupture in large earthquakes, it tends to rupture the entire fault segment and produce similar size earthquakes due to the geometry of the fault. It is notable that the characteristic model does not consider the small-to-moderate magnitude earthquakes on a fault. A third model was proposed by Youngs and Coppersmith in 1985 that combines the truncated exponential and characteristic magnitude distributions as shown in Eq. (2) and (3):

\[f^M_{\text{YC}}(M) = \begin{cases} \frac{1}{1+c_2} \times \frac{\beta \exp(-\beta(M - M_{\text{min}} - 1.25))}{1 - \exp(-\beta(M_{\text{char}} - M_{\text{min}} - 0.25))} & \text{for } M_{\text{char}} - 0.25 < M \leq M_{\text{char}} + 0.25 \\ \frac{1}{1+c_2} \times \frac{\beta \exp(-\beta(M - M_{\text{min}}))}{1 - \exp(-\beta(M_{\text{char}} - M_{\text{min}} - 0.25))} & \text{for } M_{\text{min}} < M \leq M_{\text{char}} - 0.25 \end{cases} \]

where,

\[c_2 = \frac{0.5 \beta \exp(-\beta(M_{\text{char}} - M_{\text{min}} - 1.25))}{1 - \exp(-\beta(M_{\text{char}} - M_{\text{min}} - 0.25))} \]

and \(M_{\text{char}} \) is the characteristic earthquake magnitude. Coupling the truncated exponential magnitude PDF with seismic sources defined by planar fault geometries results in unrealistically high rates for small-to-moderate magnitude events (Hecker et al., 2013), especially in the close vicinity of NAFZ (Gülerce and Vakilinezhad, 2015). Therefore, the composite
The magnitude PDF, MFD, proposed by Youngs and Coppersmith (1985) is utilized to represent the relative rates of small, moderate and large magnitude earthquakes related to the rupture systems generated by rupture sources defined in this study.

The rupture systems presented in Section 2 includes more than one sub-segment. We adopted the terminology of WGCEP (2003) and defined the rupture source as a fault sub-segment or a combination of multiple adjacent fault sub-segments that may rupture and produce an earthquake in the future. For Düzce, Central Marmara, and Ganos/Saros rupture systems with two sub-segments (as A and B), three different rupture sources can be defined; single segment sources (A and B) and a two-sub-segment source (A+B). Any possible combination of rupture sources that describes the complete rupture of the system is defined as the rupture scenario. Two rupture scenarios for these rupture systems are; (1) rupture of the two sub-segments individually and (2) rupture of the two sub-segments together. The rupture model includes the weighted combination of rupture scenarios of the rupture system. Five segments defined for Izmit rupture systems form a rupture model with 15 rupture sources and 16 rupture scenarios (Table 5). The minimum magnitude (M_min) is set to M_w=4.0 for all rupture sources considering the completeness magnitude. Mean characteristic magnitudes (M_char) for each rupture source are calculated by using the relationships proposed by Wells and Coppersmith (1994) and Hanks and Bakun (2014). The M_char values calculated using both equations are quite close to each other and the absolute value of the difference is smaller than 0.13 in magnitude units (Table 6). To grasp the epistemic uncertainty, average of the M_char value from both methods are utilized in the center of the logic tree with 50% weight and both the M_char+0.15 and M_char−0.15 values are included by assigning 25% weight. Wells and Coppersmith (1994) and are listed in Table 6. The upper bound for the magnitude PDF (M_max) is determined by adding 0.25 and 0.5 magnitude units to M_char for each source in each logic tree branch (Table 6).

Magnitude PDF, MFD only represents the relative rate of different magnitude earthquakes. In order to calculate the absolute rate of events, the activity rate N(M_min) defined as the rate of earthquakes above the minimum magnitude should be used. For areal sources, N(M_min) may be calculated by using the seismicity within the defined area. For planar fault sources, the activity rate is defined by the balance between the accumulated and released seismic moments as shown in Eq. (4). The accumulated seismic moment is a function of the annual slip rate (S) in cm/years, area of the fault (A in cm^2) and the shear modulus of the crust (μ = 30x10^12 in dyne/cm^2, Brodsky et al., 2000; Field et al., 2009). The S for the rupture sources that includes more than one segment with different S values are calculated using the weighted average of annual slip rates (weights are determined based on the area of the segment).

\[
N(M_{\text{min}}) = \frac{\mu A S}{\int_{M_{\text{min}}}^{M_{\text{max}}} f_{m}(M_w) 10^{1.5M_w+16.05} \text{d}M} \tag{4}
\]

Ultimately the magnitude distribution, MFD and the activity rate are used to calculate the magnitude recurrence relation, N(M), as shown in Eq. (5).

\[
N(M) = N(M_{\text{min}}) \int_{M_{\text{min}}}^{M_{\text{max}}} f_{m}(M_w) \text{d}M \tag{5}
\]
The magnitude recurrence relation given in Eq. (5) and the accuracy of the model parameters such as the b-value or M_{max} shall be tested by the relative frequency of the seismicity associated with the source in the moment-balanced PSHA procedure. Therefore, a weight is assigned to each rupture scenario and the cumulative rates of events attributed to that particular rupture system are plotted along with the weighted average of the rupture scenarios to calibrate the assigned weights and to evaluate the balance of the accumulated and released seismic moment. The “moment-balancing” graphs for Izmit, Düzce, Central Marmara, and Ganos/Saros rupture systems are provided in Figure 4 and used to compare the modelled seismicity rate with the instrumental earthquake catalogue. In these plots, the black dots stand for the cumulative annual rates of earthquakes and the error bars represent the uncertainty introduced by unequal periods of observation for different magnitudes (Weichert, 1980). In Figure 4, the scenarios that are separated by plus signs in the legend are the scenarios with multiple rupture sources. When multiple segments rupture together, these scenarios are separated by a comma sign in the legend. For example, the “S4, S5” line in Figure 4(c) represents the scenario where S4 and S5 sub-segments are ruptured individually. This scenario brings in relatively higher rates for small-to-moderate earthquakes when compared to the S4+S5 scenario which represents the rupture of these two segments together to produce a larger event.

The best fit between the cumulative annual rate of events and the weighted average of rupture scenarios (red dashed lines) is established by modifying the weights of the rupture scenarios—by visual interpretation. To achieve a good fit, the seismic source modeller needs to understand the contribution of the magnitude recurrence model parameters to the red broken line in different magnitude ranges. For example, the b-value significantly affects the small magnitude portion of the curve since the Youngs and Coppersmith (1985) magnitude PDF is utilized. Please remind that the b-value is calculated based on the same catalogue but for a larger region. Defining a large number of sub-segments for a rupture system also increases the cumulative rate of small magnitude events. The good fit in the small magnitude range of Figure 4 shows that: i) the b-value calculated using the larger zone is compatible with the seismicity associated with the planar source, ii) utilized segmentation model is consistent with the relative rates of small-to-moderate and large events, and iii) annual slip rate is compatible with the seismicity over the fault. The large magnitude rates in Figure 4 are poorly constrained since the catalogue used herein only covers 110 years and that time span is obviously shorter than the recurrence rate for the large magnitude event. Hecker et al. (2013) explained that “rates of large-magnitude earthquakes on individual faults are so low that the historical record is not long enough to test this part of the distribution” and suggested using the “inter-event variability of surface-rupturing displacement at a point as derived from geologic data sets” to test the upper part of the earthquake-magnitude distribution.

In each moment balancing plot, relatively higher weights are assigned to the rupture scenarios that combine the individual (single-segment) rupture sources based on the assumption (and modeller’s preference) that single-segment ruptures are more likely than multiple-segment ruptures. The weights assigned to each rupture scenario are given in Table 4, and these values are adopted in the logic tree.
5 Background Zone – Smoothed Seismicity

A background source zone of diffused seismicity is utilized to characterize the seismicity that is not associated with the rupture systems described in the previous sections. This additional background source zone represents the seismicity associated with the mapped active faults on the south of Marmara Sea (yellow-orange fault lines in Figure 1a) and the interpretation that even in areas where active faults or distinctive zones of seismicity clusters are not observed, earthquakes can still occur. Figure 1c shows that the spatial distribution of the earthquakes (outside the buffer zones around the rupture systems) is not homogeneous; density of the events increases significantly around the Geyve-Iz尼克 Fault Zone. Therefore, defining an areal source zone with homogeneous seismicity distribution would result in the overestimation of the seismic hazard in Istanbul. Instead, the background source is modelled as a source of gridded seismicity where the earthquakes are represented as point or planar fault sources at the centers of evenly spaced grid cells (0.05 degree spacing). The truncated exponential magnitude distribution (Eq. 1) is selected to represent the relative frequency of the different magnitude events for this source. In the magnitude recurrence model, spatially uniform M_max and b-values and spatially variable a-values, or seismicity rates, are defined. The minimum magnitude (M_min) is again set to M_w=4.0 and the b-value is taken as 0.81. The a-value for each grid cell was calculated from the maximum likelihood method of Weichert (1980), based on events with magnitudes of 4.0 and larger. The gridded a-values were then smoothed by using an isotropic Gaussian kernel with a correlation distance of 10 km (Frankel, 1995). The smoothed-seismicity rates overlying the earthquakes outside the buffer zones are presented in Figure 5. Tabulated values of the grid cell coordinates and the seismicity rates are provided in the Electronic Supplement 2. During the calculations of the smoothed seismicity rates, the earthquakes in buffer zones are not included in smoothing (and not double-counted). The buffer zones are only used to “associate” the earthquakes with the fault zones and collapse the earthquakes to the vertical fault planes. Therefore, the background source and the fault sources can be superposed in the PSHA calculations.

The M_max distribution of the background zone is developed by taking into account the lack of evidence for surface faulting in the city of Istanbul. So far, no active fault has been reported from the near vicinity of the study area. Similarly, the MTA Active Fault Maps (Emre et al., 2013) do not contain any active fault in the northern part of the NAFZ between Izmit and Tekirdağ. Moschetti et al. (2015) mentioned that the development of the M_max model for shallow crustal seismicity in the Western United States benefits from the large set of regional earthquake magnitudes from the historical and paleoseismic records; however, the background seismicity model accounts for earthquake ruptures on unknown faults; therefore, the M_max distribution must reflect the range of possible magnitudes for these earthquakes. We adopted a similar approach based on the fault segments of the southern strand of NAFZ documented in Murru et al. (2016) and calculated the characteristic magnitude for each segment using Wells and Coppersmith (1994) magnitude-rupture area relation. Based on the estimations of characteristic magnitude of earthquakes that may occur on the southern strand of NAFZ, the logic tree for M_max of the background zone is developed (Table 6). In this regard, the M_max distribution is defined such that there is reasonable likelihood that the M_max earthquake will not produce surface faulting (see Table 4). The focal mechanisms of the background
source should reflect the tectonic style of the parent region; therefore, a weighted combination of strike-slip (SS, 75%), normal (N, 20%), and reverse (R, 5%), motion with weights that sum to 1 is assigned to this source (Table 3). A uniform distribution of focal depths between the surface and 18 km depth is utilized.

6 Discussions on the Uncertainty Involved in the Proposed SSC Model

In the proposed SSC model, the uncertainties related to \(M_{\text{max}} \), magnitude-rupture area relations, magnitude recurrence model parameters, and the annual slip rates are considered and included in the logic tree. On the other hand, the uncertainty related to the fault geometry such as the uncertainty in segment lengths, fault widths, and dip angles remained unexplored. All rupture sources within each rupture system are considered to occur in order to capture the aleatory variability in the extent and potential size of future ruptures. However, the epistemic uncertainty in the potential rupture scenarios are not considered since only one set of weights for each rupture scenario is included in the logic tree. In order to compare the epistemic uncertainty in the proposed SSC model with the uncertainty in the earthquake catalogue, the SSC model fractals for each rupture source are calculated and the extreme values represented by the single-segment rupture sources and full-span rupture source are presented in Figure 6 by red and blue sets of curves, respectively. It is notable that the rate of observed earthquakes were used to validate the rupture scenario weights in Figure 4, aiming to capture a good fit between weighted average rates and the mean rates of observed earthquakes. Figure 6 shows that the uncertainty range sampled by the proposed model is consistent with the rate of earthquakes associated with each rupture system, especially for \(M_w < 6 \) events that have large sample size.

We would like to emphasise that the SSC model presented here is different than the models proposed by Gülerce and Ocak (2013) and Murru et al. (2016): differences in the fault geometry is minor but the differences in the magnitude recurrence models and the time dependent probabilities of earthquakes are more significant. Unfortunately, earlier publications did not provide enough information on earthquake rates for doing case-to-case comparison of the earthquake rates proposed herein with the previous works. Our model does not utilize the time-dependent hazard methodologies as in Murru et al. (2016); however, we believe that the ongoing research on the paleoseismic recurrence periods will provide a substantial contribution in the PSHA practice of Turkey and eventually will lead to a change the hazard estimates. The available paleoseismic data on NAFZ are few and insufficient to provide meaningful constraints on the “grand inversion” as used in UCERF3 model for California (Field et al., 2013). Therefore, proposed model does not include fault-to-fault ruptures that can jump over the boundaries of the defined rupture systems.
Conclusions

This manuscript presents the details of the SSC model proposed for the PSHA studies in Istanbul. When compared to the previous SSC models developed for this region, significant improvements in the proposed model can be listed as follows: (1) planar seismic sources that accounts for the most current tectonic information (e.g. updated fault maps) are built, (2) the multi-segment rupture scenarios are systematically utilized in the rupture forecast, (3) buffer zones around the rupture systems are defined to associate the small, moderate, and large magnitude events with the rupture systems, (4) activity rates for the planar rupture systems are calculated using the geological and geodetic constraints (e.g. slip rate and fault geometry), (5) balance of the accumulated and released seismic moment is considered in building the magnitude recurrence model, and (6) associated earthquakes are used to test the suitability of the magnitude recurrence model with the instrumental seismicity rates. Even though the rupture systems develop in this study accounts for the relative rates of small, moderate, and large magnitude events that can occur on the faults, a background source is defined to represent the small-to-moderate magnitude earthquakes that may take place anywhere in the vicinity of Istanbul and Marmara Sea. Properties of the rupture systems, background source and the logic tree associated with both of these components are fully documented through Tables 1-6. Additionally, coordinates of the fault segments and smoothed seismicity rates are provided in the Electronic Supplements 1-2. Therefore, proposed SSC model can be directly implemented to any of the available PSHA software for the site-specific PSHA analysis in Istanbul. The hazard analyst can incorporate the full rupture model and the complete logic tree provided in this manuscript to most of the available hazard codes without explicitly calculating the earthquake rates. In case that the earthquake rate has to be incorporated to the hazard code; the earthquake rates for each branch of the logic tree given in Electronic Supplement#3 can be used.

Acknowledgements

Authors of this manuscript are grateful for the support provided by Turkish Atomic Energy Authority (TAEK). This work was partially supported by the Pacific Gas & Electric Company Geosciences Department.

References

Figure 1: (a) Major branches of North Anatolian Fault Zone, defined rupture systems and the instrumental seismicity ($M_w > 4$) in the study area. The buffer zones used for source-to-epicenter matching are shown around the rupture systems. (b) Simplified active tectonic scheme of Turkey (modified from Emre et al., 2013). Thick lines are North Anatolian and East Anatolian fault zones, thin lines are other active faults. (c) Distribution of the declustered seismicity used to calculate the b-values. Zone 1, Zone 2 and Zone 3 are the polygons utilized to for calculating the b-values. d) Slip distribution model for Çınarcık segment. Right bending of North Çınarcık segment is 28° with respect to Central Marmara and Hersek-Gölcük segments. This results in 17 mm/y slip along the North Çınarcık segment (NCF) and 9 mm/y normal slip transverse to the fault. This 9 mm/y slip is the total slip on North and South Çınarcık faults (SCF). e) Simplified geometries of Çınarcık faults delimiting the Çınarcık Basin based on seismic profile of Laigle et al. (2008) almost passing through the line XY. Note that the throw of North Çınarcık Fault is almost twice that of South Çınarcık Fault.
Figure 2: The catalogue completeness analysis for the instrumental earthquake catalogue showing the cumulative number of events for (a) $M_w \geq 4.0$, (b) $M_w \geq 4.5$, (c) $M_w \geq 5.0$, (d) $M_w \geq 5.5$, and (e) $M_w \geq 6.0$.
Figure 3: Estimated magnitude recurrence parameters for (a) Zone 1, (b) Zone 2, and (c) Zone 3.
Figure 4: Cumulative rates of earthquakes for the magnitude recurrence model and associated events (moment balancing graphs) for (a) Izmit, (b) Düzce, (c) Central Marmara, and (d) Ganos/Saros rupture systems. Black points are the earthquakes associated with the rupture system, purple and blue lines show the single-segment and multi-segment ruptures, red broken line is the weighted average of the magnitude recurrence model. In these graphs, the median values of the slip rates and M_{max} and zone-specific b-values are utilized.

Figure 5: Spatial distribution of the activity rates in the smoothed seismicity source. Red circles are the earthquakes used in the analysis.
Figure 6: Mean and fractals of the single-segment and multi-segment rupture scenarios with the cumulative rate of earthquakes associated with the rupture system. Solid lines are the mean rates and the dashed lines show the 5% and 95% rates for each rupture scenario.
Table 1: The fault segments and rupture systems included in the SSC model. References given in the last column are: 1) Flerit et al. (2004), 2) Murru et al. (2016), 3) Ergintav et al. (2014), 4) Ayhan et al. (2001), 5) Hergert et al. (2011). Weights associated with the mean, upper bound and lower bound are 0.5, 0.25, and 0.25, respectively.

<table>
<thead>
<tr>
<th>Rupture System</th>
<th>Segment No</th>
<th>Segment Name</th>
<th>Length (km)</th>
<th>Width (km)</th>
<th>Slip Rate and associated uncertainty (mm/yr)</th>
<th>Reference for the slip rate estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izmit</td>
<td>3</td>
<td>North Çınarcık</td>
<td>34.6</td>
<td>18</td>
<td>17±2 (6±2 extension)</td>
<td>1, 2, 3, 5, Figure 1</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_1</td>
<td>Hersek- Gölcük</td>
<td>51.6</td>
<td>18</td>
<td>19±2</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_2</td>
<td>İzmit</td>
<td>30.2</td>
<td>18</td>
<td>19±2</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_3</td>
<td>Sapanca – Akyazı</td>
<td>39.1</td>
<td>18</td>
<td>19±2</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>İzmit</td>
<td>1</td>
<td>Karadere</td>
<td>24.7</td>
<td>18</td>
<td>10±2</td>
<td>1, 4</td>
</tr>
<tr>
<td>Düzce</td>
<td>D1</td>
<td>Düzce_1</td>
<td>10.5</td>
<td>25</td>
<td>10±2</td>
<td>1, 4</td>
</tr>
<tr>
<td>Düzce</td>
<td>D2</td>
<td>Düzce_2</td>
<td>41</td>
<td>25</td>
<td>10±2</td>
<td>1, 4</td>
</tr>
<tr>
<td>Ganos/Saros</td>
<td>6</td>
<td>Ganos</td>
<td>84</td>
<td>15</td>
<td>19±1</td>
<td>1, 3, 4, 5</td>
</tr>
<tr>
<td>Ganos/Saros</td>
<td>7</td>
<td>Saros</td>
<td>53</td>
<td>15</td>
<td>19±1</td>
<td>1, 3, 4, 5</td>
</tr>
<tr>
<td>Central</td>
<td>4</td>
<td>Central Marmara</td>
<td>80</td>
<td>15</td>
<td>19±2</td>
<td>1, 2</td>
</tr>
<tr>
<td>Central</td>
<td>5</td>
<td>West Marmara</td>
<td>49</td>
<td>15</td>
<td>19±2</td>
<td>1, 2</td>
</tr>
<tr>
<td>Çınarcık</td>
<td>8</td>
<td>South Çınarcık</td>
<td>39</td>
<td>18</td>
<td>(3±2 extension)</td>
<td>2, Figure 1</td>
</tr>
</tbody>
</table>

Table 2: b-values estimated using different methods and corresponding weights in the logic tree.

<table>
<thead>
<tr>
<th>Source Zone</th>
<th>Maximum likelihood estimation by ZMAP (Zone-specific)</th>
<th>Maximum likelihood estimation by Weichert (1980) (Zone-specific)</th>
<th>Regional Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b-value</td>
<td>weight</td>
<td>b-value</td>
</tr>
<tr>
<td>Düzce Rupture System</td>
<td>0.68</td>
<td>0.3</td>
<td>0.72</td>
</tr>
<tr>
<td>Izmit Rupture System</td>
<td>0.68</td>
<td>0.3</td>
<td>0.72</td>
</tr>
<tr>
<td>Central Marmara Rupture System</td>
<td>0.74</td>
<td>0.3</td>
<td>0.78</td>
</tr>
<tr>
<td>Ganos/Saros Rupture System</td>
<td>0.74</td>
<td>0.3</td>
<td>0.78</td>
</tr>
<tr>
<td>Background Zone</td>
<td>0.714</td>
<td>0.20</td>
<td>0.81</td>
</tr>
</tbody>
</table>
Table 3: Logic tree Aleatory variability for style of faulting in the background zone

<table>
<thead>
<tr>
<th>Style of faulting</th>
<th>Weights</th>
<th>Normal</th>
<th>Strike Slip</th>
<th>Reverse</th>
<th>Normal-oblique</th>
</tr>
</thead>
<tbody>
<tr>
<td>150km radius background zone</td>
<td></td>
<td>0.20</td>
<td>0.75</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>All segments except Çınarcık Fault</td>
<td>-</td>
<td>1.00</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>North and South Çınarcık Segments</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 4: Logic tree representing epistemic Aleatory variability uncertainty in the rupture scenario weights

<table>
<thead>
<tr>
<th>Rupture System</th>
<th>Rupture type</th>
<th>Included sub-segment no</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Düzce Rupture System</td>
<td>Single segment ruptures</td>
<td>D1, D2</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2-segment ruptures</td>
<td>D1+D2</td>
<td>0.5</td>
</tr>
<tr>
<td>Central Marmara Rupture System</td>
<td>Single segment ruptures</td>
<td>4,5</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>2-segment ruptures</td>
<td>4+5</td>
<td>0.4</td>
</tr>
<tr>
<td>Ganos/Saros Rupture System</td>
<td>Single segment ruptures</td>
<td>6,7</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>2-segment ruptures</td>
<td>6+7</td>
<td>0.4</td>
</tr>
<tr>
<td>Izmit Rupture System</td>
<td></td>
<td>Table 5</td>
<td></td>
</tr>
</tbody>
</table>

5
Table 5: Rupture sources and rupture scenarios utilized for the Izmit rupture system*

<table>
<thead>
<tr>
<th>Rupture Source</th>
<th>3</th>
<th>2_1</th>
<th>2_2</th>
<th>2_3</th>
<th>1</th>
<th>3+2</th>
<th>2_1+</th>
<th>2_2+</th>
<th>2_3+</th>
<th>3+2_1+2_2</th>
<th>2_1+2_2+2_3</th>
<th>2_2+2_3+2_4</th>
<th>3+2_1+2_2+2_3+2_4</th>
<th>Rupture Scenario</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>3, 2_1, 2_2, 2_3, 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3+2_1, 2_2, 2_3, 1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1, 2_2, 2_3, 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2, 2_3, 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3, 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3_2_1+2_2+2_3+1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Note: Rows show the rupture scenarios and the columns show the rupture sources. 1 and 0 in a cell indicate that the particular rupture source is included or excluded in the rupture scenario, respectively. Scenario weights are given in the last column. For sub-segments 3, 2_1, 2_2, 2_3, and 1, please refer to Figure 1b.
Table 6: Logic tree representing epistemic uncertainty in maximum magnitudes. Weights for M\textsubscript{max} 1, M\textsubscript{max} 2, and M\textsubscript{max} 3 are 0.25, 0.5, and 0.25, respectively. (WC94: Wells and Coppersmith (1994) and HB14: Hanks and Bakun (2014) magnitude-rupture area relation)

<table>
<thead>
<tr>
<th>Rupture System</th>
<th>Rupture Source</th>
<th>Source Width (km)</th>
<th>Source Length (km)</th>
<th>Characteristic Magnitude (WC94)</th>
<th>Characteristic Magnitude (HB14)</th>
<th>M\textsubscript{max} 1</th>
<th>M\textsubscript{max} 2</th>
<th>M\textsubscript{max} 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Düzce</td>
<td>D1</td>
<td>25</td>
<td>10.5</td>
<td>6.45</td>
<td>6.40</td>
<td>6.52</td>
<td>6.67</td>
<td>6.82</td>
</tr>
<tr>
<td>Düzce</td>
<td>D2</td>
<td>25</td>
<td>41</td>
<td>7.05</td>
<td>7.06</td>
<td>7.16</td>
<td>7.31</td>
<td>7.46</td>
</tr>
<tr>
<td>Düzce</td>
<td>D1+D2</td>
<td>25</td>
<td>51.5</td>
<td>7.15</td>
<td>7.19</td>
<td>7.27</td>
<td>7.42</td>
<td>7.57</td>
</tr>
<tr>
<td>Central Marmara</td>
<td>S4</td>
<td>15</td>
<td>80</td>
<td>7.12</td>
<td>7.15</td>
<td>7.23</td>
<td>7.38</td>
<td>7.53</td>
</tr>
<tr>
<td>Central Marmara</td>
<td>S5</td>
<td>15</td>
<td>49.2</td>
<td>6.91</td>
<td>6.89</td>
<td>7.00</td>
<td>7.15</td>
<td>7.30</td>
</tr>
<tr>
<td>Central Marmara</td>
<td>S4+S5</td>
<td>15</td>
<td>129.2</td>
<td>7.33</td>
<td>7.41</td>
<td>7.47</td>
<td>7.62</td>
<td>7.77</td>
</tr>
<tr>
<td>Ganos / Saros</td>
<td>S6</td>
<td>15</td>
<td>84</td>
<td>7.14</td>
<td>7.18</td>
<td>7.26</td>
<td>7.41</td>
<td>7.56</td>
</tr>
<tr>
<td>Ganos / Saros</td>
<td>S7</td>
<td>15</td>
<td>53</td>
<td>6.94</td>
<td>6.93</td>
<td>7.03</td>
<td>7.18</td>
<td>7.33</td>
</tr>
<tr>
<td>Ganos / Saros</td>
<td>S6+S7</td>
<td>15</td>
<td>137</td>
<td>7.36</td>
<td>7.44</td>
<td>7.50</td>
<td>7.65</td>
<td>7.80</td>
</tr>
<tr>
<td>Izmit</td>
<td>3</td>
<td>18</td>
<td>34.6</td>
<td>6.83</td>
<td>6.79</td>
<td>6.91</td>
<td>7.06</td>
<td>7.21</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_1</td>
<td>18</td>
<td>51.6</td>
<td>7.01</td>
<td>7.01</td>
<td>7.11</td>
<td>7.26</td>
<td>7.41</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_2</td>
<td>18</td>
<td>30.2</td>
<td>6.77</td>
<td>6.72</td>
<td>6.84</td>
<td>6.99</td>
<td>7.14</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_3</td>
<td>18</td>
<td>39.1</td>
<td>6.88</td>
<td>6.86</td>
<td>6.97</td>
<td>7.12</td>
<td>7.27</td>
</tr>
<tr>
<td>Izmit</td>
<td>1</td>
<td>18</td>
<td>24.7</td>
<td>6.68</td>
<td>6.63</td>
<td>6.75</td>
<td>6.90</td>
<td>7.05</td>
</tr>
<tr>
<td>Izmit</td>
<td>3+2_1</td>
<td>18</td>
<td>86.2</td>
<td>7.23</td>
<td>7.29</td>
<td>7.36</td>
<td>7.51</td>
<td>7.66</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_1+2_2</td>
<td>18</td>
<td>81.8</td>
<td>7.21</td>
<td>7.26</td>
<td>7.34</td>
<td>7.49</td>
<td>7.64</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_2+2_3</td>
<td>18</td>
<td>69.3</td>
<td>7.14</td>
<td>7.17</td>
<td>7.25</td>
<td>7.40</td>
<td>7.55</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_3+1</td>
<td>18</td>
<td>63.8</td>
<td>7.10</td>
<td>7.13</td>
<td>7.21</td>
<td>7.36</td>
<td>7.51</td>
</tr>
<tr>
<td>Izmit</td>
<td>3+2_1+2_2</td>
<td>18</td>
<td>116.4</td>
<td>7.37</td>
<td>7.45</td>
<td>7.51</td>
<td>7.66</td>
<td>7.81</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_1+2_2+2_3</td>
<td>18</td>
<td>120.9</td>
<td>7.38</td>
<td>7.47</td>
<td>7.53</td>
<td>7.68</td>
<td>7.83</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_2+2_3+1</td>
<td>18</td>
<td>94</td>
<td>7.27</td>
<td>7.34</td>
<td>7.40</td>
<td>7.55</td>
<td>7.70</td>
</tr>
<tr>
<td>Izmit</td>
<td>3+2_1+2_2+2_3</td>
<td>18</td>
<td>155.5</td>
<td>7.50</td>
<td>7.61</td>
<td>7.65</td>
<td>7.80</td>
<td>7.95</td>
</tr>
<tr>
<td>Izmit</td>
<td>2_1+2_2+2_3+1</td>
<td>18</td>
<td>145.6</td>
<td>7.47</td>
<td>7.57</td>
<td>7.62</td>
<td>7.77</td>
<td>7.92</td>
</tr>
<tr>
<td>Izmit</td>
<td>3+2_1+2_2+2_3+1</td>
<td>18</td>
<td>180.2</td>
<td>7.56</td>
<td>7.69</td>
<td>7.73</td>
<td>7.88</td>
<td>8.03</td>
</tr>
<tr>
<td>South Çınarcık</td>
<td>South Çınarcık</td>
<td>18</td>
<td>39</td>
<td>6.86</td>
<td>6.88</td>
<td>6.97</td>
<td>7.12</td>
<td>7.27</td>
</tr>
</tbody>
</table>
| Background | | 18 | z | z | z | z | 6.5 | 6.80 | 7.1}