Dear Editor,

Please find attached a revised version of our manuscript “Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (WesternMediterranean)”.

The two final figures have been changed to improve their quality, also we added a scale bar together with a legend. The colours have been changed too, we think now is more legible.

Yours sincerely,
Alejandra R. Enríquez, on behalf of all co-authors
Reviewer #1:

The paper presents the contribution of sea level rise and waves to shoreline changes under different scenarios. It is an interesting topic that in the last decades has gained much attention and the paper is within the remit of the journal; however, I suggest some reworking before publication as some sections are unclear as well as some figures and results missing. I really hope that the following comments will improve the quality of the paper.

We deeply thank the referee's comments and the effort he/she made in reviewing carefully our work. In the new version of the manuscript we have implemented all the points raised in the review. We think that, thanks to this discussion, the new version of the manuscript has been improved.

1. **Introduction:** The authors introduce properly the main topic in the first three paragraphs; however, from line 15 to line 24 on page 2 the author focuses on the methodology and the used data, which is described on Data and Methods section. I would recommend to remove it in order to avoid repetitions.

 We have reworded this paragraph. Now it is much shorter and simply mentions the combined use of sea level and wave projections, leaving the details for section 2. We have also moved lines 25-26 to the Data and Methods section (line 2 in page 3) in order to avoid repetitions and to improve the readability of the paper.

2. **Data and Methods:** Information about the study area which is provided in the conclusions section (i.e. bed rock and small cliff at Calla Millor, line 24 on Page 9) should be displaced in the description of the studied areas.

 We have moved this description to the beginning of the Data and Methods section, which now reads as:

 “Cala Millor and Playa de Palma are two micro-tidal sandy beaches located in Mallorca Island (Balearic Islands, Western Mediterranean Sea, Figure 1). Cala Millor is 1.7 Km along-shore by 35-40 m cross-shore, with a bed rock and a small cliff at the southernmost sector of the beach, and it is exposed to offshore waves from NE to ESE.”
3. **Video monitoring data:** the description of the SIRENA system should include information about the errors of intrinsic and extrinsic parameters. Moreover, the error of the observed shoreline position should have been displayed in Figures 11 and 12.

Section 2.3 describing the video monitoring data has been extended to incorporate the information required by the reviewer, including the references to the intrinsic and extrinsic errors. We have also modified Figure 15 to display the error of the observed shoreline position.

4. **Forcing of numerical models:** The wave climate analysis is unclear and results of wave projections are not shown in figures. Authors should provide the projections obtained from WAM model as well as the mean and extreme wave changes over the period from 2080 and 2100 and from 1980-2000. Moreover, a figure of the significant wave height versus return period should be included so that the reader can have a perception of the fit.

We have improved section 2.5 (on the forcing of the numerical models) rewriting part of the section and adding details where we considered there could be confusion. We have also produced the figure suggested by the reviewer (new figure 5) showing the evolution of Hs in one of the wave projections for the mean and extreme regimes.

![Figure 5: Return periods in A2 scenario for future projections (blue dashed line), control simulation (black dotted line) and hindcast (red line). Note that there are different time periods for the series as well as the overlapping of hindcast and control scenario. The red line indicates the first day of hindcast time series.](image)
5. Shoreline changes under climate change scenarios: The authors assume that the beach profile remains constant and although they apply PETRA model in order to check the limitation of the assumption, they do not show any figures or results.

We have now extended the results from PETRA and included a new figure with the outputs of this model that justify our assumption. The new figure 16 represents the changes in the central cross-shore profile under present-day conditions and under sea level rises of 0.5m and 0.9m. Results indicate a change of less than 20 cm. This is now discussed in the text (section 4, 2nd paragraph).

![Figure 16: Changes in the cross-profile in Cala Millor (left panel) and Playa de Palma (right panel) in nearshore area under different sea levels.](image)

6. Line 11 (Page 7): In Playa de Palma beach, differences are shown between measured and modeled peak period. A reason would be needed here.
We have added a comment on the differences found for Tp. To our understanding these may arise from i) noise in measurements and ii) local wind variability (the model just propagates the waves from the boundary but does not force them with local winds). This is now stated in the text (section 3.1, last paragraph).

7. Line28 (Page 7): It is said that the difference between measured and simulated shoreline is related to the distance of the cameras. How much is the error of the measured shoreline? This should be indicated.

We have added here a reference to section 2.3, where the errors of the cameras are now explained in detail.

8. Lines 29-31 (Page 9) - Line 1 (Page 10): It is justified that the beach shape is constant due to the low variability in the energy flux and that the beach profile plays a minor role in the shoreline retreat. Nevertheless, neither results nor figures are provided in the manuscript. In my view, they should have been provided.

We have modified the paragraph in section 4 referring to the beach shape and also the summary section. We have assumed constant beach shape for a number of reasons: i) our numerical models do not reproduce the morphological response to the beach shape in the long term, ii) the shape is largely controlled by anthropogenic activities on the emerged beach, to increase to comfortability of tourism, iii) we assume that the effects of increasing mean sea level is much larger than any sediment redistribution and iv) at least for Cala Millor, the projected changes in mean wave direction are smaller than the natural variability.

9. Language issues:
The paper uses multiple verb forms. For example, on line 8 (Page 4) present in the passive voice is used ('models are combined’) and on line 15 (Page 4) past in the same voice is selected ('simulations were performed’). Perhaps a revision of the manuscript should be needed. Please avoid the use of first personal along the manuscript. As you probably know, scientific studies do not recommend it.

We are grateful for the suggestion, the manuscript has been revised and it had been tried to improve the language.

10. References:
References are not properly written. On the reference list, the initials of the author(s) must be written always after the last name and the manuscript does not supply the correct
order. I suggest reading carefully manuscript preparation guidelines. Finally, another mistake that I would like to mention: The in-text citation of Vera Guimarães et al. (2015) is displayed as Guimarães on the reference list.

We have revised and corrected the references to homogenise the format.
Reviewer #2:

This study investigates hydrodynamic conditions for two beaches in the Balearic islands and estimates the evolution of a shoreline proxy under different sea-level rise and waves conditions. The hypothesis of the study are clearly exposed and the topic is important. In particular, the authors attempt to assess the impacts of sea-level rise and changing waves conditions, which are usually considered negligible in many studies. I think it is relevant for NHESS and could be published with moderate revisions.

We are grateful to the referee for the constructive comments provided. We have followed all his/her suggestions, which we believe have helped to improve our manuscript.

1. The study is first of all a hydrodynamic study: it assumes that the nearshore bathymetry is unchanged over multi-decadal timescales, and estimates how the position of an hydrodynamic shoreline proxy evolves with changing offshore conditions. The authors provide a justification to this modeling strategy in their conclusion. However, in practice, assuming no change in the beach morphology as sea-level rises appears as a very optimistic assumption. Some references in the manuscript support this statement. Other suggested references: e.g. Ranasinghe et al. 2012, Climatic Change; Davidson Arnott et al., 2002, Journal of Coastal Research.

We agree with the reviewer and we are aware of the limitations of our approach. Following also the other reviewer’s comments we have extended the discussion on the assumptions of constant beach profile and shape. We have also made further tests using the PETRA model to demonstrate the appropriateness of these assumptions in the context of our study.

Regarding the references provided by the reviewer, they refer to natural environments in which the shoreline may migrate landward in response to sea level rise. This is not the case in our study, where sediment supply does not exist due to the anthropization of the beaches. Nevertheless, we appreciate the examples; they have been referred to in the conclusions as cases in which the beach morphology changes.

2. To justify their modelling choice the authors could say that they assess a minimum impact to be expected from sea-level rise and changing waves conditions, with the assumption that the sedimentary budget over these two beaches remains in equilibrium. Assessing minimum impacts of sea-level rise is useful for decision makers as it defines the minimum adaptation needs.

We agree; this has been stated in the introduction and conclusion sections.
3. Data regarding the evolution of these beaches over the last decades would be useful for the reader to understand this sedimentary context. Do the authors have access to historical aerial photographs that would allow to appreciate how the two sites have evolved over these timescales?

Since the 1970s many coastal zones in Mallorca have undergone a strong urbanization, with natural environments such as dunes becoming heavily exploited touristic resources. This has made that during the last 50 years the sedimentary budget in the areas of our study have been far from being natural. There are aerial photographs of the evolution of the two zones, but what they reflect is the urban development rather than the natural coastal evolution of the beaches.

4. This study would also benefit from better explanations regarding the uncertainties: in particular, there are some confusions regarding the +/- 1 /Sigma uncertainties around median sea-level rise values for scenarios RCP 4.5 and 8.5. The authors interpret them as minima / maxima, which is not true, as there are difficulties in defining boundaries in future sea-level rise (so-called high-end and low-end scenarios). I suggest to revise this aspect, especially page 8 (line 20: RCP85 +1\Sigma is not a worst case scenario).

We apologise for the confusing wording. Indeed, what we called “worst case scenario” is not the so-called high-end scenario. Therefore, the terms have been reworded. As stated in the text, the uncertainties refer to the ensemble model dispersion. So we now refer simply to “RCP85 plus 1-sigma” or the “upper uncertainty limit”.

5. Details: -Abstract: please note that the coastline generally refers to a marker such as the dune toe. Here, the authors investigate changes in a shoreline proxy: the limit of the swash. I suggest to precise in the manuscript which shoreline proxy has been chosen and why it is relevant in the context of Mallorca. I guess that the beach width is especially important for tourism (?). To support this discussion, Boak and Turner 2004 (Journal of Coastal Research) would be an appropriate reference.

We have changed the abstract to account for the reviewer’s comment. We have also explicitly stated in the introduction that our focus is on the shoreline position, to avoid confusion with the widely used term of coastline (section 1, 3rd paragraph). In addition, we also mention that changes in the shoreline are a strong impact for the tourism-oriented beaches (same paragraph).

6. Line 30 page 9: "The justification of constant beach shape is largely justified by the fact that there are no significant changes in the energy flux in wave projections that may force a change in the shape due to oceanic forcing." I strongly advise to revise this sentence:
with higher sea-levels and identical hydrodynamic conditions, the beach profile is expected to translate or change. I advise the authors discuss the literature dedicated to beaches equilibrium profiles and beaches morphodynamics. Another paper that could be useful would be Stive et al 2002.

We have rewritten most of section 4 and tried to better explain our approach. We agree with the reviewer and we are aware of the limitations of our modelling. Further analyses have been done with respect to the assumption of unchanged beach profile and shape (see the response to reviewer 1 for more details); they are now discussed with more depth in section 4. We also clearly state that our results are a lower boundary of the expected shoreline retreat, as we are neglecting other processes such as erosion.

7. Figure 12: the scale of this figure is not adequate given the scale of the processes to be observed. I suggest to redo this figure.

We understand the point made by the reviewer. Nevertheless we would prefer to keep these figures as: 1) they provide an overview of the overall performance of the models along the entire length of the two beaches; 2) the changes are clear in Figures 12 and 13, which are zoomed versions of the former.

8. I suggest to avoid abbreviations when not necessary (e.g. std in the legend of figure 13)

We have removed these abbreviations.

We are thankful to the referee for
Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (Western Mediterranean).

Alejandra R. Enríquez¹, Marta Marcos¹, Amaya Álvarez-Ellacuría², Alejandro Orfila¹, Damià Gomis¹

¹IMEDEA (Universitat de les Illes Balears - CSIC), Esporles, Spain
²SOCIB, Balearic Islands Coastal Observing and Forecasting System, Spain

Correspondence to: Alejandra R. Enríquez (a.rodriguez@uib.es)

Abstract. In this work we assess the impacts in reshaping coastlines as a result of sea level rise and changes in wave climate. The methodology proposed combines the SWAN and SWASH wave models to resolve the wave processes from deep waters up to the swash zone in two micro-tidal sandy beaches in Mallorca Island, Western Mediterranean. In a first step, the modelling approach has been validated with observations from wave gauges and from the shoreline inferred from video monitoring stations, showing a good agreement between them. Afterwards, the modelling setup has been applied to the 21st century sea level and wave projections under two different climate scenarios, RCP45 and RCP85. Sea level projections have been retrieved from state of the art regional estimates, while wave projections were obtained from regional climate models. Changes in the shoreline position have been explored under mean and extreme wave conditions. Our results indicate that the studied beaches would suffer a coastal retreat between 7 and up to 50 m, equivalent to half of the present-day aerial beach surface, under the climate scenarios considered.

1 Introduction

Rising sea levels represent one of the major threats for coastal regions, causing submersion, erosion and increased vulnerability to extreme marine events, among other negative impacts (Nicholls and Cazenave, 2010). It is expected that such effects will be aggravated in the coming decades as sea level rise accelerates in response to global warming (Church et al., 2013) and coastal population and development grow (Hanson et al., 2011).

Several studies have related coastline retreat during the last decades with sea level rise (e.g. Feagin et al., 2005; FitzGerald et al., 2008), although other relevant processes have also been identified. These include oceanic forcing by wave climate and storms, direct or indirect human actions (e.g. mining activities or fluid extraction) and local features such as coastal morphology (Cazenave and Le Cozannet, 2014). Coastline retreat has important environmental impacts, but also socio-economic implications as it affects population, infrastructures and assets. The impact of sea level rise in the shoreline position has therefore become a subject of increasing concern, particularly in densely populated regions with high urban development. This is the case of many Mediterranean regions, whose economy, which constitutes about 14% of the total Gross Domestic Product of the EU (Eurostat, 2011), largely relies on tourism based on beach and other seaside recreational activities. Thus, sea level
rise and its potential impacts are key factors that must be incorporated in coastal risk management and climate change adaptation measures.

In this paper, we investigate the shoreline changes in two anthropized micro-tidal sandy beaches located in Mallorca (Balearic Islands, Western Mediterranean Sea). The shoreline is defined as the water-land interface of the beach, i.e., the limit of the swash zone. The potential impacts of a shoreline retreat would increase the vulnerability of the near-shore infrastructures. In addition, both are typical tourism-oriented beaches in urban environments of the Mediterranean region, so that their reduction or disappearance would be detrimental for the local economies.

The impact of sea level rise along sandy coastlines consists of two processes, namely inundation and erosion. Increased sea levels allow waves and surges to act at higher levels landward in the beach profile, increasing erosion rates (Zhang et al., 2004). However, in this study the beach erosion has not been considered, which means that our estimates of landward migration of the coastline could be biased low if erosion rates increase and sediments are carried offshore; in other words what is assessed here is the minimum impact in beach shoreline retreat. This assumption is further discussed later. Some earlier studies have explored the potential impact of future sea level rise on shoreline changes, although without taking into account changes in the wave climate (see e.g. Wu et al., 2002; Stive, 2004; Poulter and Halpin, 2008; Le Cozannet et al., 2014). Others have addressed the impact of waves, including extreme events, erosion rates, morphological changes, flooding, and vulnerability of infrastructures but sometimes without including changes in sea level (see e.g. Ruju et al., 2012; Vera Guimarães et al., 2015; Medellin et al., 2016). Here, in line with works as Villatoro et al. (2014), we address both effects. For that we have used regional sea level changes retrieved from global sea level projections, with all different contributions, in combination with regional wave projections over the Western Mediterranean Sea up to 2100 under two different climate change scenarios. Here we combine both, regional sea level and wave projections in the Western Mediterranean under two different climate scenarios for 2100, in line with works as Villatoro et al. (2014). For sea level we have not used global projections; instead, we have estimated regional values for each of the different contributors to sea level rise using state-of-the-art results. For the wave regime, we have combined the SWAN and SWASH numerical models to resolve the wave processes from offshore wave conditions up to the beach. The offshore conditions have been obtained from regional wave projections for the Mediterranean Sea and we explored changes in the mean regime as well as in the extreme waves. In summary, we have used the most up-to-date ocean forcing to represent projected changes in the oceanic conditions under climate change scenarios. Our results would thus be consistent with adopted values of sea level rise and the definition of the future climate scenarios (Brunel and Sabatier, 2009; Tamisiea and Mitrovica, 2011; Church et al., 2011; IPCC, 2013).

The paper is organized as follows. Section 2 is devoted to the description of the study areas, the characteristics of the wave climate, the data available and the numerical approach. The validation of the methodology, which includes the comparison between modelled and observed shallow water waves and coastline positions, is presented in Section 3. Section 4 describes the shoreline changes obtained under different climate change scenarios. Finally, a summary and some conclusions are presented in Section 5.
2 Data and Methods

Cala Millor and Playa de Palma are two micro-tidal sandy beaches located in Mallorca Island (Balearic Islands, Western Mediterranean Sea, Figure 1). Cala Millor is 1.7 Km along-shore by 35-40 m cross-shore, with a bed rock and a small cliff at the southernmost sector of the beach, and it is exposed to offshore waves from NE to ESE. The wave regime in deep waters has a significant wave height (Hs) of 1 m and a peak period (Tp) of 4 s. Playa de Palma beach is 4 km along-shore by 30-50 m cross-shore and is exposed to offshore waves conditions from SE to SW, with a Hs of 0.7 m and a Tp of 4.8 s. Figure 2 characterizes the mean wave regime offshore in both sites using self-organizing maps (SOM) that have been built with a 58-yr wave hindcast (see section 2.5 for more details). SOM display graphically the temporal distribution of Hs, Tp and wave direction (in arrows). The results evidence that low-energy states are dominant at both sites and that, overall, Cala Millor is more energetic than Playa de Palma.

Playa de Palma and Cala Millor beaches are part of the beach monitoring programme of the Balearic Islands Coastal Observatory and Forecasting System (SOCIB) since 2011 (Tintoré et al., 2013). This programme includes periodic topography and bathymetry surveys, continuous video-monitoring of the shoreline position and in-situ measurements of near-shore waves and currents, among others. In addition, a dedicated field survey (RISKBEACH) was undertaken in Cala Millor in March-April 2014, during which higher resolution observations were obtained (Morales et al., 2016). Specific data used in the present work are described in the following.

2.1 Topo-bathymetric surveys

Bathymetry surveys were conducted using a single-beam echo-sounder “BioSonics DT/DE Series Digital Ecosounder” in Cala Millor beach and a multi-beam echo-sounder “R2Sonic2020” in Playa de Palma beach. The final spatial resolution was 1 m cross-shore and 2 m alongshore in Cala Millor and 0.5 m x 0.5 m in Playa de Palma. These measurements were complemented with topographies of the aerial beach obtained using a survey grade RTK-GPS (Real Time Kinematic – Global Position System) mounted in a backpack carried by a human walker. These detailed beach topo-bathymetries were surveyed under calm conditions.

2.2 Hydrodynamic data

In Cala Millor, nearshore hydrodynamic data were obtained from three directional wave Acoustic Waves and Currents (AWAC) sensors located at 8 m, 12 m and 25 m water depths; the AWACs were deployed as part of the RISKBEACH field survey, which covered from 12-March-2014 to 14-April-2014. Offshore hourly hydrodynamic data were recovered from Capdepera buoy, located 36.45 km northeast of Cala Millor at 48 m depth (see Figure 1 for location). The buoy has been operative during the period 1989-2014 as part of Puertos del Estado (the Spanish Holding of Harbours) buoys network. On the other hand, in Playa de Palma, wave data came from a coastal buoy located at 23 m depth and an ADCP deployed at 17 m depth, both operating since January 2012 as part of the SOCIB beach monitoring programme.
2.3 Video imagery data

Five and fourteen video cameras were used to measure the coastline position along Cala Millor and Playa de Palma beaches, respectively. These cameras are part of the video-based coastal zone monitoring system called SIRENA developed by SOCIB and IMEDEA. Departing from images taken at 7.5 Hz the SIRENA system generates statistical products that after specific post processing provide quantitative information of hydrodynamics and morphodynamics (Nieto et al., 2010). Specifically, the coastline is routinely obtained from the time image consisting in the addition of all images captured during 10 minutes (a total of 4500 images) and applying a post-processing of cluster classification. After applying different corrections to overcome the coarser resolution of the far field camera images as well as rectifying the perspective projection, the coastline is georeferenced in a world coordinate system.

The processing of camera images involves two types of errors related with the intrinsic and extrinsic calibrations. After images have been optically corrected, the extrinsic calibration relates pixel position with real-world coordinates and thus errors are associated with the georeferencing (Simarro et al, 2017). Typically, resolution ranges between 0.5 and 2 pixels for Cala Millor and 0.5 to 5 pixels for Playa de Palma. Conversely, pixel resolution decreases with distance but higher resolution (~ 0.2 m) is obtained at the shore since cameras are oriented to measure this part at the centre of the image. Only pixels where errors are less than 3 m have been considered in this study. Exemplarily, the pixel resolution is added to Figure 15, in one of area with the lowest radial resolution in Playa de Palma.

2.4 Numerical approach

With the aim of simulating the shoreline changes under given offshore conditions, the SWAN (Booij et al., 1999) and SWASH (Zijlema et al., 2011) models have been combined to resolve the wave processes from deep waters up to the swash zone. SWAN is a third-generation wave model that solves the spectral action balance equation for the propagation of wave spectra (http://swanmodel.sourceforge.net/). This model allows an accurate and computationally feasible simulation of waves in relatively large areas. On the other hand, SWASH is a phase resolving non-hydrostatic model governed by the nonlinear shallow-water equations with the addition of a vertical momentum equation and non-hydrostatic pressure in horizontal momentum equations (http://swash.sourceforge.net/). Due to its computational cost, the application of SWASH is restricted to small areas. The combination of both models allows high resolution and accurate results with less computational cost.

For the present study, SWAN simulations were performed in a stationary mode over two regular nested grids. In Cala Millor, the coarser grid covers a domain of 21 km x 21 km with its lowest left vertex at 39.53°N, 3.38°E (Figure 3) and a resolution of 149 m x 119 m in the x and y directions, respectively. The size of the finer grid is 9.5 km x 9.5 km with its lowest left vertex at 39.6°N, 3.38°E and a resolution of 60 m. The coarse grid in Playa de Palma beach covers a domain of 21.5 km x 27.7 km, with its lowest left vertex at 39.31°N, 2.5°E (Figure 4) and a resolution of 100 m x 100 m in x and y directions. The domain of the finer grid is 13 km x 10.8 km starting at 39.47°N, 2.58°E, with a resolution of 50 m x 50 m. In all cases, the
SWAN output consisted of the 2D variance energy density spectrum and the spectral parameters of propagated wave conditions. Each output SWAN spectra corresponded to one hour of simulation and were used as the input wave conditions of SWASH.

SWASH simulations in Cala Millor were performed on a 1.5 km x 3.2 km rectangular grid with its lowest left vertex at 39.57°N, 3.38°E and a resolution of 3 m x 3 m (Figure 3), with a maximum depth at 17 m. A larger SWASH domain was required in Playa de Palma, so we used a 3 m x 3 m grid covering a domain of 3 km x 7 km starting at 39.47°N, 2.75°E and tilted 45° in order to orient the wave maker boundary parallel to the beach, at 15 meters depth, was used. The SWASH simulations lasted for 30 min, with a time step of 0.05 s to keep the Courant number between 0.01 and 0.5. The initial wave conditions imposed at the eastern boundary in Cala Millor and at the southwestern boundary in Playa de Palma, corresponded to the 2D variance energy density spectrum field provided by the corresponding SWAN simulations. The final output consisted of instantaneous water level elevations in the whole domain and the position of the coastline at each time step.

2.5 Forcing of numerical models

The SWAN-SWASH model setup described in section 2.4 has been run under present-day and future climate conditions in both domains. The first step aims at validating the model performance, for which the present-day runs, forced with realistic offshore waves, have been compared against measured nearshore wave parameters. In the present-day runs, deep water conditions were retrieved from the SIMAR database (Pilar et al., 2008), a 58-years wave re-analysis generated with the WAM model (WAMDI GROUP, 1988). The re-analysis, which is freely distributed by Puertos del Estado, covers the Western Mediterranean and provides 3-hourly wave data up to 2011 and hourly data since then. The two closest SIMAR grid point to each of the domains were selected to force the SWAN model for the periods of validation (as detailed later). Although this data set has already been evaluated against observations (Pilar et al., 2008; Martinez-Asensio et al., 2013, 2015), we have further compared the output one of this output with the offshore waves observed at Capdepera buoy in order to ensure the reliability of the forcing in the particular periods and locations studied here (section 3.1).

Once validated, the model setup has been forced under future climate conditions. To so do, projected sea level rise together with changes in the wave climate have been define the future conditions under which the models are run to evaluate the shoreline changes. A summary of the values used for sea level and waves is presented in Table 1. Regarding sea level, Sea level projections by 2100 have been computed following Slangen et al (2014), who provided the regional distribution of the different contributors to sea level change under two climate change scenarios, namely Representative Concentration Pathway (RCP) 45 and RCP85 (Moss et al., 2010). These, which are representative of moderate and large emission scenarios, respectively. Slangen et al (2014) used an ensemble of 21 Atmosphere-Ocean coupled General Circulation Models (AOGCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive, to estimate changes in ocean circulation and heat uptake contribution, atmospheric loading, land ice contribution (including all glaciers, ice caps and ice sheets on Greenland and Antarctica), groundwater depletion and mass load redistribution worldwide, together with the associated uncertainties for each term. As the regional distribution of each component was provided, we selected the...
Mediterranean region and averaged the sum of the components as the input for projected sea level rise. Our results lead to a regional sea level rise of 48±23 cm and 67±31 cm by 2100 for RCP45 and RCP85, respectively. Uncertainties quoted correspond to 1−σ deviation from the ensemble mean (Slagen et al., 2014). Such values are thus consistent with the widely adopted values of sea level rise and the definition of the future climate scenarios (Brunel and Sabatier, 2009; Tamisea and Mitrovica, 2011; Church et al., 2011; IPCC, 2013).

On the other hand, changes in the wave climate during the 21st century have been obtained from regional wave projections over the Western Mediterranean (Puertos del Estado et al., 2016). These projections were carried out using the WAM model with a spatial resolution of 1/6° (over the same grid as the SIMAR data base) and forced with a set of dynamically-downscaled surface wind fields from AOGCMs. A total of 6 simulations were considered, five corresponding to the A1B scenario and one to the A2 scenarios (IPCC SRES 2000). Each projection was accompanied by a control simulation representing the climate of the last four decades of the 20th century, as it is usual practice. As the regional wave projections were computed before the adoption of the new set of RCP scenarios, for our purposes we of the work, it is assumed here that A1B (A2) scenario is equivalent to RCP45 (RCP85). One of these simulations is exemplarily represented in Figure 5, in which the evolution of Hs under A2 scenario is depicted for the mean regimen (Figure 5a) and for the extremes (Figure 5b).

Changes in the mean and extreme wave regimes have been assessed by computing the differences between the values averaged over the period 2080-2100 (from the future projections, in blue in Figure 5) and those averaged over 1980-2000 (from the control simulations, in black in Figure 5). These differences reach 0.2 m under calm conditions and up to 0.3 during an extreme event. The obtained differences were then added to the hindcasted values from the re-analysis, which represent our best approach to the actual present-day climate (in red in Figure 5). For each beach, the closest grid points (the same location as for the SIMAR database) were selected to simulate the future wave climate. At the point representative of deep water wave regime of Cala Millor, the resulting values for the mean Hs is were 1.20 m and 0.95 m for the A2 and A1B scenarios, respectively, while in Playa de Palma the values are 0.63 m and 0.65, respectively. The storm events have been assessed by computing the 10-years return periods by fitting a Generalized Pareto Distribution to each time series. The values obtained were 4.5 m and 4.2 m under A2 and A1B climate change scenarios in Cala Millor and 4.3 m and 4.4 m in Playa de Palma. Given the similarities between the two wave climate change scenarios, we finally use a single (mean average) value for the simulations has been used (see Table 1). Regarding to the wave direction the changes are negligible and remain unchanged in the future simulations.

In summary, six wave cases simulations have been carried out for each site to predict the shoreline changes under mean conditions: one for each of the two sea level rise scenarios (RCP45 and RCP85) and one for their respective upper and lower uncertainty limits (i.e. plus 1−σ and minus 1−σ). In addition, four simulations have been performed for extreme conditions: due to computational constraints, we focused on the worst case: two highest sea levels for each scenarios, that is, the occurrence of the 10-years return level storm occurring over the two sea level scenarios and their upper limit (i.e., for the mean value and the mean value +1−σ).
3. Evaluation of model setup under present-day climate conditions

3.1 Comparison with wave observations

As described above, the SIMAR wave re-analysis has been taken as representative of the offshore wave conditions and used to force the numerical model setup. To illustrate its reliability, the time series at the closest grid point in Cala Millor was compared against observations from the nearby Capdepera buoy. The time series and scatter plots of the measured and modelled statistical wave parameters (Hs, Tp, θ) are shown in Figures 6 and 7 for a 3-months period (January-March 2014). The root mean square error (RMSE) and the correlation coefficient (ρ) between observed and modelled parameters are quoted in the figures. Results show that the hindcast agrees well with the observed Hs and Tp with correlations over 0.8 and small RMSE. For wave direction, however, the correlation decreases down to 0.5, mostly due to the fact that the WAM resolution cannot properly resolve the coastal topography near the SIMAR location. A closer look at Figure 7 (bottom panel) reveals that SIMAR contains waves from NW which are not recorded by the buoy. However, waves from the dominant directions (i.e. from N to SE) are not affected and, therefore, the Hs and Tp have enough accuracy to represent the wave climate of this offshore area.

Despite the differences found in the wave direction, the advantages of using re-analysed data instead of observations for the input wave in SWAN are evident: first, the modelled time series are complete, while observations are often gappy; and second, the deep water waves can be propagated over large domains thus providing values close to our two areas of study. Although the validation of the numerical hindcast is limited to a single grid point close to Cala Millor, we rely on previous assessments (e.g. Martínez-Asensio et al., 2013) also validated this hindcast and it is therefore assumed that the re-analysis is equally valid for Playa de Palma.

The output of the SWAN model was validated against observations in the two beaches. In Cala Millor the results of SWAN forced with SIMAR data were compared with nearshore wave observations during the period from 14- March to 14-April-2014 (i.e. a total of 755 hours of simulation). The closest grid points of the SWAN model to each of the three directional wave ADCP were selected. Resulting correlations, RMSE and biases are listed in Table 2 for the three ADCP and for the three wave parameters. Overall, the statistical parameters show good agreement between measurements and the model output, with correlations of 0.9 for Hs and Tp and over 0.7 for the wave direction. To further illustrate the model performance, observed and modelled time series are plotted in Figures 8 and 9. Both reflect the ability of the model to capture the magnitude and variability of nearshore waves. Nevertheless, during the storm events recorded (as in March 28th), the model underestimates the observed Hs by up to 30 cm.

In Playa de Palma, the simulated waves have been compared with the observations from a buoy moored at 23 meters depth and with an ADCP at 17 m depth for the period of 1-September to 30-September 2015 (i.e. a total of 720 hours of simulation). The results are summarized in Table 3 and the time series are plotted in Figures 10 and 11. Like in Cala Millor, there is a good agreement in Hs with correlations over 0.9. For Tp, however, observations display higher variability than modelled data, which makes the correlations to drop to 0.3 and the bias to reach 0.6 s (see Figure 11). Possible reasons for
this discrepancy are the instrumental noise in measurements and/or the influence of local wind within the SWAN domain. The differences between observed and modelled wave directions are also larger than in Cala Millor, with non-significant correlations. The reason for the discrepancies in wave direction is probably the inability of the model to accurately represent the wave diffraction occurring at the SE of the bay of Palma, where the buoy and the ADCP are located. This area is protected by a headland (see Figure 4) that may cause worse results in wave direction.

3.2 Comparison with observed shoreline position

A total of four and three simulations were have been carried out with the SWASH model for Cala Millor and Playa de Palma beaches, respectively, in order to validate the model results with measurements of shoreline positions. The dates chosen for the validation correspond to dates in which the video monitoring provided good quality images being also close to the dates when the bathymetry surveys were performed (they are listed in Tables 4 and 5). Wave makers were defined at the eastern boundary of the SWASH model domain in Cala Millor and at the south-western boundary in Playa de Palma, in both cases with the SWAN wave conditions. These input wave conditions for the validation process are specified in Tables 4 and 5 for the indicated dates.

Observed and modelled shoreline changes for each case study are have been compared in Figures 12 and 13 along the two beaches. Results show that the modelled shorelines line up with observations in all cases. In Cala Millor the agreement is better in the central part of the beach, while some differences are found in the northern and southernmost sector. It is important to remark that images obtained from the beach cameras are increasingly uncertain with the distance from the cameras (section 2.3 for details). Therefore, part of the difference between measured and simulated shoreline at the ends may come from this error in measurements. In Playa de Palma only the area between 39.51 ° N and 39.53 ° N is used for the comparison as this is the stretch of the shoreline where the video-system has the requested quality. We will also restrict to this sector the discussion on future projections.

In addition to the figures, the RMSE and biases between observations and model results have been calculated for each case and are listed in Tables 4 and 5. These statistics must be set in a proper context in order to evaluate how good the model performance is. To do so, the temporal variability of the shoreline position have been estimated as the standard deviation (cross-shore) at each along-shore position for which coastlines measured from video monitoring have been used. In Cala Millor we observe higher variability is observed, calculated between April and May 2014, in the central part of the beach (mean value of 8.4 m) and lower towards the ends, with a mean value along the entire beach of 5.5 m. Figure 143 shows the shorelines simulated for the case studies (red lines), the corresponding measured shorelines (blue lines) and the variability of the shoreline (grey area), zoomed around an area at the centre of the beach. In the case of Playa de Palma, the shoreline displays a cross-shore variability of 6 m in the area around the centre of the beach and lower at the extremes, with a mean value of 3 m, as calculated with observations between August and October 2014. The results are plotted in Figure 154 in which again the central area has been zoomed in order to highlight the
differences. Notably, the modelled shorelines are very similar to each other, because the forcing \textit{was is} also similar in the three case studies.

4. Shoreline changes under climate change scenarios

Since the model performance for present-day climate conditions is considered to be satisfactory, the same model setup \textit{has will} been used to assess the response of the shoreline under future climate change scenarios. Shoreline changes were simulated for both, mean conditions and extreme waves (the latter being defined here as H_s corresponding to the 10-year return level) for the RCP45 and RCP85 climate change scenarios.

Future projected changes in shoreline \textit{are have been} evaluated assuming that the present-day beach profile remains constant. In order to check the limitations of this assumption we have run a numerical one-dimensional model capable of estimating profile changes under different mean sea level conditions. The model used here is PETRA (Gonzalez et al., 2007) and it \textit{was has been} run for the central profile of each beach \textit{under the conditions of no sea level rise and 0.5 and 0.9 m of sea level rise and wave mean regime}. The results of the model are plotted in Figure 16 for both beaches, zoomed to the nearshore sector where the largest changes are expected. Profile changes are, at most, 20 cm under the highest sea level rise of 0.9 m; that is, in these environments profile changes due to sea level rise are of the order of sandbar formation and mostly eroding the berm. \textit{We therefore have considered the variations in the beach profile to be negligible and the assumption of constant beach profile to be reasonable in this context}. The simulations were forced with mean waves over two mean sea level cases, namely present-day sea level and the worst case scenario (i.e. RCP85 + 1-σ corresponding to 98 cm). The model outputs indicate that in these environments profile change due to sea level rise are negligible (of the order of sandbar formation and mostly eroding the berm) and therefore we will not take it into account in this work.

A second assumption in our climate change simulations is that the beach shape remains unchanged under future conditions. This means that we consider a constant direction in the mean wave energy flux. Thus, any redistribution in the alongshore sediments is neglected in front of the hydrodynamic response to increased mean sea level.

The present-day modelled coastline \textit{has been} used as a reference to assess the changes under climate change scenarios. The loss of aerial beach, defined here as the landward migration averaged over the entire beach, is indicated in Tables 6 and 7 for each simulation and for mean and extreme conditions expected under climate change scenarios. For the extreme conditions, also the maximum loss is listed. In addition, Figures 157 and 186 illustrate the maximum change in the shoreline position obtained for Cala Millor and Playa de Palma (corresponding to extreme wave conditions under the RCP85 + 1-σ scenario). Major changes are projected to occur in the central part of Cala Millor beach, where it shows the higher variability (see Figure 143). Larger relative impacts (loss of width), however, are projected towards the extremes of the beach, as these are the narrower sectors. In Playa de Palma, the projected changes in the shoreline are quite uniform along the beach.

Since projected changes in H_s by 2100 are small, their potentially hazardous effects depend primarily on the mean sea level with which they are combined. In Cala Millor, the averaged coastline retreats ranges between 7 m under moderate/low scenario
and 24 m with the highest sea level rise considered. During extreme wave conditions the shoreline would retreat up to 29 m on average and may reach 49 m at some parts of the beach. With such values the flooding would reach the urbanized area over the promenade. However, it must be pointed out that the topography does not include the height of the wall backing the beach and the simulations were stopped there, so that the flooding extension could actually be underestimated. In Playa de Palma the average coastline retreat ranges from the 7 m obtained for the low scenario to the 21 m obtained for the worst-case scenario upper limit considered here. Under extreme conditions, the loss of Playa de Palma beach increases with higher sea level rise and, in all the cases investigated, the water level reach the promenade at least in part of the domain (Table 6).

5. Summary and conclusions

In this paper we investigated the capabilities of state of the art numerical models to reproduce the changes in the shoreline position in Cala Millor and Playa de Palma beaches have been investigated. These two case studies were selected for two main reasons. First, they are representative of many other anthropized beaches in the Balearic Islands (and of many other beaches of the Mediterranean Sea): they are beaches located in urbanized areas, backed by walls and therefore with limited possible landward migration of the shoreline. Second, these two sites are part of the beach monitoring programme carried out by SOCIB and, consequently, a wide and complete set of observations is available allowing the validation of the numerical models against measurements. Furthermore, the two beaches are exposed to offshore wave conditions from different directions and different wave heights, with Playa de Palma being located inside a bay and Cala Millor facing the open sea.

Much effort has been devoted to the validation of the model set up to ensure that the chosen combination of SWAN – SWASH models is able to reproduce the shoreline variability within a reasonable accuracy. In both cases, modelled and observed Hs from near-shore instruments were in very good agreement, with correlations over 0.9. This increases our confidence in the forcing of the SWASH model. In turn, a satisfactory correspondence between observed and modelled shoreline position has been found. The agreement between modelled and observed shorelines was better in the central sector of the beaches. This is because the observations derived from the video monitoring system are more reliable close to the location of the cameras and also because the SWASH model configuration requires a smooth bathymetry which can misrepresent some parts of the shore, as is the case of the southernmost sector of Cala Millor where a bed rock and a small cliff distort the wave field.

Regarding the projections of the shoreline changes under climate scenarios of sea level and wave climate, a major assumption of our study is that the morphology of the beach will not change in the future. That is, both the beach shape and the profile will be the same under the climate conditions at the end of the century. It is well known that beach profile evolves in response to storms, moderate wave conditions and sea level rise causing changes in the beach morphology (e.g. erosion followed by recovery episodes, see Short et al., 1996; De Falco et al., 2014; Smallegan et al., 2016; Ranasinghe et al., 2012; Davidson-Arnott et al., 2002). The justification of constant beach shape is largely justified by the fact that there are no significant changes in the energy flux in wave projections that may force a change in the shape due to oceanic forcing. Furthermore, we have also been demonstrated that the changes in the beach profile play a minor role in the shoreline retreat due to sea level rise and
waves. On top of the above reasons, we can hardly avoid the simplifications can be hardly avoided, as numerical approaches reproducing the long term morphological response of the beach do not exist so far.

Under the assumptions outlined above we have found that the retreat in the future shoreline in both sites, Cala Millor and Playa de Palma are primarily a consequence of waves acting onto a higher mean sea level. It must be remarked that changes in the wave climate are small and the impact of extreme waves increases mostly because they are projected to occur concurrently with higher sea levels. Our results indicate that the beach regression varies between 7 and 24 m along Cala Millor and between 7 and 21 m in Playa de Palma, depending on the climate change scenario considered. This lost is further exacerbated under moderate (return period of 10 years) storm conditions, which may induce a temporary flooding reaching over 49 m in Cala Millor and 30 m in Playa de Palma, thus likely overtopping the walls of the promenade. The Playa de Palma coastal retreat is lower than in Cala Millor due to the steeper slope of the beach profile. As pointed out above in the introduction, our approach proposed here does not consider beach erosion, which means that the above estimates are conservative and could be biased low if erosion acts removing beach sediments and accelerating aerial beach loss (Brunel and Sabatier, 2009).

Playa de Palma and Cala Millor, like many other typical urban Mediterranean beaches, are subject to high touristic pressure, especially during the summer season, and thus concentrate valuable assets and infrastructures. Since tourism constitutes the main economic activity of a large fraction of the region, the social, environmental and economic impacts of future sea level rise are anticipated if no adaptation measures are implemented.

Acknowledgements

This work is supported by the CLIMPACT (CGL2014-54246-C2-1-R) funded by the Spanish Ministry of Economy) and MORFINTRA (CTM2015-66225-C2-2-P). A. R. Enríquez acknowledges an FPI grant associated with the CLIMPACT project. M. Marcos acknowledges a “Ramón y Cajal” contract funded by the Spanish Government. We thank Puertos del Estado for providing deep-water wave data from the SIMAR database. Topo-bathymetries and video-monitoring observations are part of the beach monitoring facility of SOCIB. The authors are grateful to Dr. A. Slangen for providing the data for the regional sea level rise scenarios.

References

Short, A. D. (1996). The role of wave height, period, slope, tide range and embaymentisation in beach classifications: a review. Revista Chilena de Historia Natural (69), 589-604

Table 1. Input condition of the model setup under climate change scenarios for the two beaches. See the text for details on their computation.

<table>
<thead>
<tr>
<th></th>
<th>Climate scenario</th>
<th>Cala Millor</th>
<th>Playa de Palma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea level rise</td>
<td>RCP45</td>
<td>48±23</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>RCP85</td>
<td>67±31</td>
<td></td>
</tr>
<tr>
<td>Hs (in m)</td>
<td>A1B</td>
<td>1.1</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hs 10-year return</td>
<td>A1B</td>
<td>4.5</td>
<td>4.4</td>
</tr>
<tr>
<td>period, (in m)</td>
<td>A2</td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Table 2: Comparison between SWAN results and nearshore wave observations in Cala Millor beach. The period spanned by the series is from 14- March to 14-April-2014.
Table 3: Comparison between SWAN results and nearshore wave observations in Playa de Palma beach. The period spanned by the series is from 01 to 30 September-2015.

<table>
<thead>
<tr>
<th></th>
<th>ADCP 8 m</th>
<th>ADCP 12 m</th>
<th>ADCP 25 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_s (m)</td>
<td>0.13</td>
<td>0.01</td>
<td>0.97</td>
</tr>
<tr>
<td>T_p (s)</td>
<td>1.21</td>
<td>0.02</td>
<td>0.94</td>
</tr>
<tr>
<td>θ_p (º)</td>
<td>25.60</td>
<td>6.30</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Table 4. Dates and forcing conditions of the SWASH simulations and results of the validation against observed shoreline position in Cala Millor beach.

<table>
<thead>
<tr>
<th></th>
<th>Buoy 23 m</th>
<th>ADCP 17 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_s (m)</td>
<td>0.19</td>
<td>0.12</td>
</tr>
<tr>
<td>T_p (s)</td>
<td>1.56</td>
<td>0.40</td>
</tr>
<tr>
<td>θ_p (º)</td>
<td>46.19</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Table 5. Dates and forcing conditions of the SWASH simulations and results of the validation against observed shoreline position in Playa de Palma beach

<table>
<thead>
<tr>
<th></th>
<th>H_s (m)</th>
<th>T_p (s)</th>
<th>θ_p (º)</th>
<th>RMSE (m)</th>
<th>BIAS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-March</td>
<td>1.6</td>
<td>8.3</td>
<td>13</td>
<td>5.7</td>
<td>3.2</td>
</tr>
<tr>
<td>28-March</td>
<td>0.8</td>
<td>7.9</td>
<td>28</td>
<td>2.7</td>
<td>-0.6</td>
</tr>
<tr>
<td>1- April</td>
<td>0.5</td>
<td>5.5</td>
<td>137</td>
<td>6.5</td>
<td>-3.2</td>
</tr>
<tr>
<td>2- April</td>
<td>1.1</td>
<td>5.7</td>
<td>134</td>
<td>5.4</td>
<td>-3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>H_s (m)</th>
<th>T_p (s)</th>
<th>θ_p (º)</th>
<th>RMSE (m)</th>
<th>BIAS (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03- Sept.</td>
<td>0.4</td>
<td>3.7</td>
<td>154</td>
<td>6.1</td>
<td>1.5</td>
</tr>
<tr>
<td>15- Sept.</td>
<td>0.6</td>
<td>6.7</td>
<td>223</td>
<td>5.9</td>
<td>1.7</td>
</tr>
<tr>
<td>28- Sept.</td>
<td>0.4</td>
<td>2.7</td>
<td>47</td>
<td>5.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Table 6: Loss of aerial beach (defined here as the landward migration of the shoreline averaged over the entire beach) for both, the mean and extreme conditions expected under climate change scenarios in Cala Millor (in m). For the extreme conditions, also the maximum loss is quoted.

<table>
<thead>
<tr>
<th>Sea Level Rise (climate scenario ± uncertainty, in cm)</th>
<th>Mean conditions</th>
<th>Extreme conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean loss (m)</td>
<td>Mean loss (m)</td>
</tr>
<tr>
<td>0.25 (RCP45 -1σ)</td>
<td>7.2</td>
<td>-</td>
</tr>
<tr>
<td>0.36 (RCP85 -1σ)</td>
<td>10.7</td>
<td>-</td>
</tr>
<tr>
<td>0.48 (RCP45)</td>
<td>11.7</td>
<td>18.5</td>
</tr>
<tr>
<td>0.67 (RCP85)</td>
<td>17.5</td>
<td>21.8</td>
</tr>
<tr>
<td>0.71 (RCP45 +1σ)</td>
<td>17.5</td>
<td>24.6</td>
</tr>
<tr>
<td>0.98 (RCP85 +1σ)</td>
<td>24.2</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Table 7. Loss of aerial beach (defined here as the landward migration of the shoreline averaged over the entire beach) for both, the mean and extreme conditions expected under climate change scenarios in Playa de Palma (in m). For the extreme conditions, also the maximum loss is quoted.

<table>
<thead>
<tr>
<th>Sea Level Rise (climate scenario ± uncertainty, in cm)</th>
<th>Mean conditions</th>
<th>Extreme conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean loss (m)</td>
<td>Mean loss (m)</td>
</tr>
<tr>
<td>0.25 (RCP45 -1σ)</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>0.36 (RCP85 -1σ)</td>
<td>8.2</td>
<td>-</td>
</tr>
<tr>
<td>0.48 (RCP45)</td>
<td>11.3</td>
<td>17</td>
</tr>
<tr>
<td>0.67 (RCP85)</td>
<td>14.8</td>
<td>20.5</td>
</tr>
<tr>
<td>0.71 (RCP45 +1σ)</td>
<td>15.7</td>
<td>23.4</td>
</tr>
<tr>
<td>0.98 (RCP85 +1σ)</td>
<td>21.4</td>
<td>27.9</td>
</tr>
</tbody>
</table>
Figure 1: Mallorca Island with Cala Millor and Playa de Palma beaches marked with orange squares. SIMAR grid points used to characterize the offshore wave climate and the Capdepera wave buoy are also marked. The inset map represents the Western Mediterranean basin.

Figure 2: Playa de Palma and Cala Millor self-organizing maps (SOM). SIMAR databases are shown in 100 cells displaying the more representative deep water sea conditions at Playa de Palma (a) and Cala Millor (b) beaches. The blue colour illustrates the frequency of the sea states, together with the Hs in meters (yellow to red), the period in seconds (white to black) and the direction in arrows. It can be seen that the more energetic conditions come from the SW in Playa de Palma and from the NE in Cala Millor.
also the more frequency waves are low energy in both sites.

Figure 3: SWAN and SWASH computational domains for Cala Millor beach. Yellow line indicates the sector where the three ADCPs are located.
Figure 4: SWAN and SWASH computational domains for Playa de Palma beach. Yellow dots indicate the locations of the shallow water wave buoy and ADCP.
Figure 5: Return periods in A2 scenario for future projections (blue dashed line), control simulation (black dotted line) and hindcast (red line). Note that there are different time periods for the series as well as the overlapping of hindcast and control scenario. The red line indicates the first day of hindcast time series.

Figure 6: Capdepera buoy observations (blue) and hindcasted SIMAR (black) time series of Hs, Tp and wave direction. RMSE and correlation are quoted for the wave direction (for Hs and Tp the values are quoted in Figure 6).
Figure 7.6 Scatter plots of buoy observations vs SIMAR hindcast for Hs (left) and Tp (right). RMSE and correlation are quoted in each figure.

Figure 8.7: Hs, Tp and wave direction as modelled by SWAN and observed at the ADCP deployed at 12m depth in Cala Millor beach.
Figure 89: SWAN vs ADCP scatter plots of H_s (left) and T_p (right) in Cala Millor.

Figure 90: H_s, T_p and wave direction as modelled by SWAN model and observed at the buoy deployed at 23 m depth in Playa de Palma beach.
Figure 1: SWAN vs ADCP scatter plots of Hs (left) and Tp (right) in Playa de Palma.
Figure 11.12. Observed (black) and modelled by SWASH (red) shoreline positions in Cala Millor
Figure 3-2. Observed (black) and modelled by SWASH (red) shoreline positions in Playa de Palma
Figure 134. Modelled (red) and observed (blue) shorelines positions in Cala Millor with mean shoreline position (black line) and its standard deviation std (grey shadow) zoomed to the central sector.
Figure 154. Modelled (red) and observed (blue) shorelines positions in Playa de Palma with mean shoreline position (black line) and its standard deviation (grey shadow) and the resolution of the pixels of the cameras (orange shadow).

Figure 16: Changes in the cross-profile in Cala Millor (left panel) and Playa de Palma (right panel) in nearshore area under different sea levels.

Figure 157: Present-day shoreline position in (black) and landward migration (in red) in the worst case scenario (mean sea level rise under RCP85 and extreme wave conditions) by the end of the 21st century in Cala Millor beach.
Figure 168. Present-day shoreline position in (black) and landward migration (in red) in the worst case scenario (mean sea level rise under RCP85 and extreme wave conditions) by the end of the 21st century in Playa de Palma beach.