Interactive comment on “Coastal flooding: impact of waves on storm surge during extremes. A case study for the German Bight” by Joanna Staneva et al.

Joanna Staneva et al.
Joanna.Staneva@hzg.de
Received and published: 19 October 2016

Answers of the reviewers’ comments

Reviewer #1

General Comments
As a detailed assessment of a coupled high resolution wave-ocean modelling system’s sensitivities in an extreme case, this paper provides a useful addition to existing published evidence regarding coupled systems and is a valid extension of the work in Staneva et al., 2016. I would therefore recommend this paper for publication, but with some additions/corrections related to the points below.

Specific Comments

Section 2.1
Whilst this information may well be published in the authors’ previous papers, it would be useful to those reading this paper in isolation if some extra details on the update frequencies of atmosphere and river forcing data were provided.

Authors: More information about the model setup, including a description of the open boundary forcing, atmospheric forcing and river runoff, has been included in Section 2.1. Additional references were also added.

Section 2.2
This is an extreme case in shallow water, so please could the source term parameterizations for bottom friction and depth induced breaking dissipation that were used in the wave model be stated?

Authors: Additional information about the parameterizations used in our model setup, including more references, was provided in Section 2.2.

Section 2.3
I found the statements that “[u] is the sum of the Eulerian current and the Stokes drift” and “Thus the divergence of the radiation stress is the only (to second order) force related to waves in the momentum equations.” somewhat contradictory. In the equations, Mellor (2011) has been followed correctly and I see the basic point about radiation stress being the difference between coupled and uncoupled systems, so just wondering if the authors can review the text in this section for clarity.

Authors: We apologise for the confusion we created with this mis-formulation and completely agree with this comment. As described in the text, we follow the procedure of Mellor (2011). This inconsistency was also mentioned by reviewer #2. Both suggestions are exactly what was used in our study. We corrected the text regarding the statement of [u] accordingly, and a clearer explanation is given in the revised manuscript.

Section 2.5
As per the comment for section 2.1, can the frequency of coupling fields exchange be added please? Authors: Additional information about the coupler, coupling...
fields, etc., including references, has also been provided in the revised manuscript.

Also, please note in Table 1 whether the NORIV wave model is one or two way coupled for consistency with the rest of the table.

Authors: We agree and modified Table 1 to specify that NORIV is a two-way coupled model, making the third column consistent with the rest of the text.

Section 4.1 It's not clear whether the wave model discussed in this section and associated figures is the two way coupled version or the stand alone wave model. Can this be made more explicit?

Authors: This point has been clarified in Section 4.1.

Section 4.1, p9, line 9, Looking at the figure I get the impression that the peak of the storm is simply mistimed rather than over predicted, unless the authors are discounting the measured peak for some reason. Please check.

Authors: We agree with the statement that the peak of the storm is slightly mistimed rather than over-predicted, as shown in Figure 4, and this has been changed accordingly in the revised manuscript.

Section 4.2 and later discussions. If I understand this correctly, the surge residual is defined by subtracting the same predicted tidal residual (generated via the T_TIDE package) from observations and model alike. The model residual is therefore a combination of both the model error in background tide prediction plus error in the surge prediction. In that case, I think it is important that any known systematic error in the model tide is stated in order to contextualise the benefits of the wave coupling. If these errors are not well understood, then I would recommend that the potential errors associated with the model tide are acknowledged and caveated in the discussion.

Authors: We agree that the nonlinear interaction of the storm surge signal with the systematic error in the tidal simulation may have an effect on estimating the difference between the observed and the simulated surge signal. We provided further clarification in Section 4.1 and in the discussion section.

Section 5.1 Please comment on whether the coupling improved results at all individual stations, or just most of them...

Authors: This topic has been discussed in greater detail in Section 5.1.

Section 5.2 Regards the comparison with the barotropic model: 1) One of the arguments presented by the authors relates to large scale inter-annual effects on background water level, which a barotropic model will not deal with; this is correct, but can be mitigated to some extent if the predictive system for water level comprises an astronomic prediction of water level based on observations (which will include these long term effects) plus the barotropic model's estimate of the surge residual - this approach is adopted operationally in the UK for example. In terms of this paper one question for the authors to address is whether they believe that these effects are not present in the T_TIDE data used to calculate the residuals they show?

Authors: The tidal analyses in the present study consider the bias and linear drift of the tidal signal, which for the length of analysed period, a few days, may be sufficient to fit the large-scale annual and interannual signal of the background water level. However, we agree with the reviewer that for the analysis of longer periods a more sophisticated approach is advisable.

2) Of more importance, the barotropic model presented does not include any barotropic coupled effects (which might be included due to both waves radiation stresses and also water volumes associated with river inputs?) - however, the text implies that the main difference is baroclinicity. In order to make this argument better it would be good if the authors could present why they believe that introducing some coupled processes to the barotropic model would not close the gap between this model and the FULL run?

Authors: Yes, when analysing the role of baroclinicity, we used the barotropic model that was not coupled to the wave model. The aim of our sensitivity studies was to
demonstrate the individual effects of coupling with waves and baroclinicity separately. We agree that to some extent the introduction of coupled processes of the barotropic model would partially reduce the gap between this model and the FULL run, which is discussed in Section 5.2. The possible advantages of including the wave-current interactions in the 2-D models to improve the sea level predictions were also addressed in the discussion.

3) Finally, please check Figure 14, where the surge line for station ST3 does not look consistent with that in Figure 10.

Authors: We apologise for the incorrect Figure 14a and thank you for noticing the error. In the revised manuscript, the correct Figure 14a has been included.

Section 6 Items to consider for addition to the discussion: 1) the wave model, via the atmosphere model I expect, has over-predicted during period T2 and then been about right for period T3. In support of the comments regarding atmospheric uncertainties, how did the comparisons of modelled and observed surge vary during these periods for the FULL run?

Authors: We agree with the suggestion and added comments on this issue in an additional paragraph in the discussion section.

2) In these simulations, there is no feedback to the atmospheric model from the waves, so the coupled system is not fully closed. In terms of the argument being presented here, where the waves are strongly affecting the ocean model in a shallow water region, I’d imagine that the sensitivity to the atmosphere-wave-ocean coupling is not too big a consideration at these scales; however, it might be useful to acknowledge this point more than has been presently done on line 9, p15.

Authors: We completely agree. The atmosphere-wave (COSMO-WAM) interaction is a subject of another study (Wahle et al, 2016). Our aim is to study and understand the wave-current interactions (the current manuscript) and wave-atmosphere interactions separately for our coupled model system before proceeding to fully three-way atmosphere-wave-ocean interactions. The latter will be the subject of forthcoming developments and studies. We included an additional paragraph addressing this issue.

3) Is it possible for the authors to discuss/speculate further on the role and potential uncertainties of the shallow water terms in the wave model? My impression in this case is that the region with strongest wave-ocean interactions will see strong contributions from these terms in such a large storm and shallow depths.

Authors: The role and potential uncertainties of the shallow water terms in the wave model have been discussed in the final section.

Technical Comments/Proposed text corrections

Page 2, para 2 There are a number of typos and the grammar could be improved significantly in this paragraph and, if kept, the authors need to review this carefully.

Authors: We completely agree and carefully revised the manuscript for typos English grammar.

However, in the context of the paper I think that the arguments being made about climate changes effects and other reasons for improving model accuracy can be taken as read (or just briefly expanded upon in the first paragraph); so I’d suggest removing this paragraph altogether.

Authors: We agree with this comment and removed this part from the Introduction.

p2, line 2, "predictions of the sea" -> "predictions of sea" Authors: The suggested revision has been made.

p2, line 6, "demand of improving" -> "demand for improving" Authors: The suggested revision has been made.

p2, line 8, "role at shallow area" -> "role in enhancing sea-surface elevation in shallow water areas" Authors: The suggested revision has been made.
The suggested revision has been made.

This has been re-phrased, following Reviewer#3 comment.

The suggested revision has been made.

The suggested revision has been made.
Reviewer #2

In the new manuscript, more emphasis is given on the storm surge predictions from coupled and uncoupled models, while the general experiment setup and case study are the same as in the previous paper. The advantage of having a coupled model system is discussed; the authors show that the coupling of their ocean circulation model with a wave prediction model improves the predictions of extreme storm surges to a large degree. We are thankful...

The relevance of wave-current interactions for storm surges still lacks sufficient documentation that is backed up with observational data, and this new paper presents strong arguments for using coupled models for the forecasting of dangerous storm surges. The data is presented clearly and informative in the figures, but the text needs some revision with regard to clarity and English grammar, therefore I would recommend the paper for acceptance with minor revisions.

Authors: We completely agree and carefully revised our English grammar.

Points to be corrected: - Some references that are used in the text are missing in the reference list. Authors: We crossed-checked all references.

- page 2, line 8: wind-induced surface stress does generally play an important role, not only in shallow areas.

Authors: We agree and rephrased this sentence.

- page 2, line 11: The reference to Qiao et al (2004) is not an original reference to this problems, there are many earlier studies that treat wave-induced mixing in both experiments and models. It would be good to also cite some of the earlier works here.

Authors: We cited earlier works and added new references.

- page 6, line 12: If \( \langle u \rangle \) is the sum of Eulerian current and the Stokes drift, equation (3) will solve for the Lagrangian current following water masses. This is somehow different to the way GETM solves for fixed grid points. If solving for \( \langle u \rangle \) that includes Stokes drift, the radiation stress is not the only wave information that is used in eq. (3). Note that traditional formulations of radiation stress use a Eulerian framework. I think that that \( \langle u \rangle \), as it is used here, should only include the Eulerian current.

Authors: We are sorry for the confusion. We completely agree with this statement and have made the appropriate corrections in the revised text.

- The coupling from GETM to WAM should also be described along with section 2.3.

Authors: We added this information to Section 2.3.

- Some text passages, particularly section 6 are somehow hard to read and should be revised for clarity and grammar.

Authors: The text has been revised. The language and grammar have been corrected. We hope that the revised manuscript reads better.

Reviewer #3

The manuscript presents a case study analysis of coastal inundation during an extreme extratropical storm event (Xaver) that made its land fall in northwest Europe December 2013), with a considerable impact in the North Sea. The central focus (and goal) of the paper is to show the goodness of having a wave model coupled to a surge model (or a regional ocean model). I consider this study useful and interesting, nevertheless I have some comments regarding the way the study and the results are presented. I make some suggestions regarding language, but the authors should read and correct the whole text, since the use of the English language is sometimes far from appropriate.

Authors: We are very thankful for the suggestions regarding the language. We completely agree and carefully revised our English language and grammar.

Abstract The abstract has several flaws that I suggest the authors should address. Please have in mind that the abstract should “survive” (or stand) by itself. Hence it
should have concise but complete information so that an educated reader knows (or understands) what to expect in the text body. Please provide information about the models you are using in the abstract.

Authors: We agree and added more information about the model and major results to the Abstract.


Authors: This has been changed to “Extreme storm events”.

P1-L21: replace “enhances significantly” with “is significantly enhanced” Authors: The suggested revision has been made.

P1-L23: replace “area” with “areas” Authors: The suggested revision has been made.

P2-L7: erase “the” before “ocean”. Authors: This sentence has been revised for clarity.

P2-L7: Regarding sentence starting with “The wind-induced...” why is this here? It seams disconnected from the rest of the text (although, of course, being a valuable statement). Authors: This statement has been revised for clarity.

P2-L8: sea surface or ocean surface (mixed) layer? I tend to look at the sea (ocean) surface as a skin layer. Please be clearer. Authors: This statement has been revised for clarity.

P2-L13: add “a” before “circulation”. Authors: The suggested revision has been made.

P2-L16: I am afraid wave models are not earth system components. Regarding “... and further integrating of biogeochemical or morphologic parts” I don’t get what you mean; could you please re-phrase it? Authors: The suggested revision has been made and the statements re-phrased.

P2-L20: instead of “wind boundary layer” (which doesn’t exist or it is not a valuable geophysical statement” please use “lower marine atmospheric boundary layer”. All references here are from high wind speed regimes, when the highest (deeper) impact actually occurs during light winds and swell regimes. Consider adding some references regarding light winds regime. Authors: We added references regarding weak wind regimes to the introduction.

P2-L22 (and in several other parts of the text): add curly brackets on the years in the references. Authors: The suggested revision has been made.

P2-L26: what do you mean with “radiation stress approach”? Authors: We agree and this has been re-phrased in the revised manuscript.

P2-L27: what is a “practical analysis”. I am afraid this might not be a very scientific statement. Authors: This has been re-phrased in the revised manuscript.

P2-L28: what is “circulation for the ocean state”? Authors: The suggested revisions have been made.

P2-L30: the sentence starting with “The role of...” is lost here. No relation with before of after text. Authors: This sentence has been revised. This part is now the start of a new paragraph.

P3-L1: add “a” before “Lagrangian”. “Drift” what drift? Stokes? Wave induced? Authors: The suggested revision has been made. It was also re-phrased making the description clearer.

P3-L3: replace semicolon with full stop and start new sentence afterwards. No need for this here (here and in other parts of the text). Authors: The suggested revision has been made.

P3-L7: it is a fact that storm surges are meteorologically driven, not a “well accepted” situation. It would be the same as saying that “it is well accepted that ocean surface gravity waves are wind driven”, or that “the thermohaline circulation is driven by water density differences”. Authors: We completely agree and have made the suggested
revision throughout the manuscript.
P3-L11: correct tense of sentence starting with “IPCC. . .”. Authors: Following the suggestion of reviewer #1, we removed this paragraph from the introduction.
P3-15: please provide some more explanation on how waves and tides are amplified by the rise of sea level. Authors: More information and explanations are provided including additional references
P3-L16: “could” or “can”? Authors: We changed to “can”.
P3-L17: add “and” after “seawalls”; add “ocean” before “circulation”. Authors: The suggested revision has been made.
P3-L18: add a comma after “Bight”; replace “greatest” with “great”. Authors: The suggested revision has been made.
P3-L19: how can the forecast reduce the damage? Authors: The suggested revision has been made.
P3-L20: add “farms” after “energy”; replace “navigation” with “routing”. Authors: The suggested revision has been made.
P3-L23: sentence starting with “Further. . .” is confusing; please re-write. Authors: The suggested revision has been made.
P3-L30: replace “substantial” with “a considerable”; replace “for” with “in” Authors: The suggested revision has been made.
P4-L1: erase “cause”. Authors: The suggested revision has been made.
P4-L8: erase “as well as satellite data”; add “and remote sensing” after “in- situ”. Authors: The suggested revision has been made.
P4-L22: “outer model” or “outer domain”? Authors: We corrected this typo mistake.
P5-L15: “action density” or “wave energy density”? Authors: We modified to “wave energy density”.
P5-L21: there is no “S” in the rhs of equation (2). Authors: The source terms \( S = S(\sigma, \theta, \phi, \lambda, t) \) on the right hand side of the equation (2) is the net source term expressed in terms of the action density. It is split as the sum of a number of source terms representing the effects of wave generation by wind (\( S\text{wind} \)) quadruplet nonlinear wave-wave interactions (\( S\text{nl4} \)), dissipation due to white capping (\( S\text{wc} \)), bottom friction (\( S\text{bot} \)) and wave breaking (\( S\text{br} \)).
P6-L9: “wave motion” is too broad; please provide additional explanation Authors: We agree and provided more explanation including additional references at the end of Section 2.4.
P6-L27: add “wave model” after “by”; the WAM model doesn’t “give” data! all this sentence is inaccurate from a wave model standpoint. Authors: The suggested revision has been made.
P7-L2: add “of” before “GOTM”. Authors: The suggested revision has been made.
P7-L10: replace “causing” with “that caused”. Authors: The suggested revision has been made.
P7-L19: replace “has” with “had”. Authors: The suggested revision has been made.
P9-L5: replace “As an example we present” with “As can be seen in” Authors: The suggested revision has been made.

C13
P15-L27: add “have” after “We”; add “the” after “that”. Authors: This sentence has been revised for clarity.

Please also note the supplement to this comment:
http://www.nat-hazards-earth-syst-sci-discuss.net/nhess-2016-227/nhess-2016-227-AC4-supplement.pdf