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Kurzfassung. Debris flows, avalanches, landslides, and oth-
er geophysical mass flows can contain O(106− 1010)m3 or
more of material. These flows commonly consist of mixture
of soil and rocks with a significant quantity of interstitial flu-
id. They can be tens of meters deep, and their runouts can5

extend many kilometers. The complicated rheology of such a
mixture challenges every constitutive model that can reason-
ably be applied; the range of length and timescales involved
in such mass flows challenges the computational capabilities
of existing systems. This paper extends recent efforts to de-10

velop a depth averaged “thin layer” model for geophysical
mass flows that contain a mixture of solid material and flu-
id. Concepts from the engineering community are integrat-
ed with phenomenological findings in geo-science, resulting
in a theory that accounts for the principal solid and fluid15

forces as well as interactions between the phases, across a
wide range of solid volume fraction. A principal contribu-
tion here is to present drag and phase interaction terms that
comport with the literature in geo-sciences. The program pre-
dicts the evolution of the concentration and dynamic pres-20

sure. The theory is validated with with data from one dimen-
sional dam break solutions and it is verified with data from
artificial channel experiments.

1 Introduction

Globally there are about 50 volcanoes that erupt every year.25

During the past century tens of thousands of people have
been killed by volcanic flows and hundreds of thousands
forced from their homes Tilling (1996); The-Committee-
on-Natural-Disasters (1994); Committee (1994). Two-phase
mass flows containing water and solid particles, called30

lahars, are common in volcanic regions. They can be
initiated by several mechanisms. A volcanic explosion can
be accompanied by large plumes and pyroclastic flows
consisting of rock and gas that race along the surface of

the mountain at speeds as high as 100 meters per second35

Sheridan (1979). The hot ash can melt snow, creating a
muddy mixture that knock down trees and entrain rocks and
boulders into the flow. Cotopaxi Volcano in Ecuador is an
example of a volcano that has produced many large lahars
by this process in the past Pistolesi et al (2013). Crater lakes40

on volcanoes are another source of mud flows, a recent
example being the 2007 lahar of Ruapehu in New Zealand
Procter et al (2010). A third mechanism for initiating lahars
is intense rainfall on hillsides that are devoid of vegetation
and exposures of loose material like clay soils or volcanic45

ash. An example of this type of lahar is the 1998 mudflow at
Casita Volcano in Nicaragua that occurred during Hurricane
Mitch and caused hundreds of deaths Sheridan et al (1999).
Lahars can carry constituent particles that are typically from
clay to boulder size and can propagate tens of kilometers50

before coming to rest Procter et al (2010). As solid particle
sediment out of the flowing mass the resulting deposits can
be up to one hundred meters thick Legros (2002).However,
the typical deposits left after a debris flow passes are on the
scale of meters.55

In order to develop a complete mathematical model of
mud and debris flows, two principal challenges must be
overcome: rheology, and scale. First, constitutive relations
must be developed to describe granular material including60

clays, sands, pebbles and rocks, with interstitial water.
Second, a computational method must be developed that
extends over six orders of magnitude. Neither of these
challenges can be fully met at this time. This paper tries to
strike a balance between fidelity to the physics of mass flows65

and computational feasibility. We describe a modeling effort
that draws on the wisdom from engineering and geo-science,
to postulate constitutive theory and fluid-solid interaction
effects, and, through a depth averaging process, results in a
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system of equations that is computationally tractable.70

The modeling effort here has its origins the pioneering
work of Savage and Hutter Savage and Hutter (1989). They
began with mass and momentum balance laws based on a
Coulomb constitutive description of dry granular material.75

By scaling and depth averaging, they develop a “thin layer”
model for granular flows down inclines. Flow over general
topography was addressed in Gray et al (1999); Patra et
al (2005); Pudasaini and Hutter (2003). Comparison of
thin layer model results to historic flows is presented in80

Sheridan et al. Sheridan et al (2005). In Hutter et al (2003),
the appropriateness of these thin layer models is considered,
for several different types of geophysical flows. Much of
the modeling effort is summarized in Pudasaini and Hutter
(2007).85

Iverson and his co-workers Iverson (1997); Iverson and
Denlinger (2001) argue that the presence of interstitial fluid
fundamentally alters the behavior of geophysical flows, and
fluid effects should be included in the constitutive behavior90

of the flowing material. Starting with equations of mixture
theory Bedford and Drumheller (1983) and through a careful
examination of experiments, these papers developed a sys-
tem of mass and momentum balance laws for the mixture.
Unfortunately in this development an equation for the mo-95

tion of pore fluid was not readily available. Instead, based
on experimental data, a transport equation for the fluid was
postulated.

A different approach, based on a fully three-dimensional
model of two phase flows, can be found in Meruane et al100

(2010); Dartevelle (2004).
Pitman and Le Pitman and Le (2005) rigorously devel-

oped a two phase thin layer model of fluid and granular
material. They begin with a fully three dimensional model of
two phase flows, based on model equations in engineering105

Jackson (2000). The model equations are scaled and depth
averaged. The resulting system of equations is not complete,
and closure assumptions are required. With these assump-
tions, the mathematical system is shown to be hyperbolic
under common conditions, and thus well posed (see Pelanti110

et al (2008)). The model of Pitman and Le (2005) includes a
drag term, which is the only term describing the interaction
of the two phases; the coefficient of drag must be fitted to
experiments. That model assumes the fluid is inviscid, and
that there is no frictional dissipation in the fluid phase at the115

basal surface. Both of these features, which are reasonable in
bench-scale fluidized bed experiments, are suspect for large
mass flows. This paper reconsiders the model equations of
Pitman and Le (2005) and proposes a revision that better
represents two phase geophysical flows. Related work can120

be found in Valentine (1989); Dobran (1991).

A different approach to modeling mud flows employ
a visco-plastic constitutive assumptions Mei at al (2001);

Coussot (1997); see also Ancey (2006); Balmforth and Cras-125

ter (1999). In these papers, the choice of visco-plastic flow
model drives the subsequent derivation, as well as the re-
quired parameter-fitting necessary for the constitutive rela-
tions. The process of depth averaging a visco-plastic flow
is always difficult. The interface between yielding and non-130

yielding material is itself a free surface that must be deter-
mined. This attribute requires the use of multiple layers in
the model system, with all the resulting complexity.

2 Model Derivation

This paper uses a similar framework to that developed in Pit-135

man and Le (2005). However, a complete set of model equa-
tions for a granular phase and for a fluid phase are written.
Phase interaction terms are modeled, and scaling of all terms
suggests simplifications that can be made. Depth averaging
and closure assumptions completes the derivation.140

A note on sign convention: in soil mechanics it is common to
consider compressive stresses as positive; in fluid mechanics
compression is negative. We caution the reader to observe the
sign convention in the equations below.

2.1 Fundamental Assumptions145

The fundamental theory of two phase flows can be found in
Dobran (1991); Jackson (2000). In two space dimensions,
consider a thin layer of granular material (s) and intersti-
tial fluid (f ), each of constant specific density ρs and ρf ,
respectively, flowing over a smooth basal surface, b. Neglect150

any erosion. Along the basal surface, define a Cartesian co-
ordinate system Oxyz, with origin O defined so the Oxy is
tangent to the basal surface, with the x-direction the down-
stream direction, and Oz is in the normal direction. Write
v, u for the velocities of the solid and fluid constitutients, re-155

spectively, and ϕ for the solid volume fraction. We assume
the mass is fully saturated, so the sum of the solid and flu-
id volume fractions adds to one. When writing equations in
component form, we use subscripts to denote the component,
and superscripts the phase.160

Mass conservation for the two constitutent phases may be
written as in Anderson and Jackson (1967):

∂tρ
sϕ+∇ · (ρsϕvi) = 0 (1)

∂tρ
f (1−ϕ)+∇ · (ρf (1−ϕ)ui) = 0 (2)

The momentum equations are:165

∂t(ρ
sϕv)+∇ · (ρsϕvv) (3)

=∇ ·T s+ fs+ ρsϕg

∂t(ρ
f (1−ϕ)u)+∇ · (ρf (1−ϕ)uu (4)

=∇ ·T f + ff + ρf (1−ϕ)g

Here T s, T f are the stress tensors for the solid and fluid, and170

fs, ff the interaction force between the phases. We must
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postulate constitutive relations and an equation for the in-
terphase force, to close the system. Jackson (2000) presents
an argument for separating buoyancy from other interphase
force terms (such as drag or virtual mass), and for properly175

accounting for buoyancy in a field with fluid pressure vari-
ations. Similar modeling can be found in Neri et al (2003,
2007) and Dobran (2001); Dobran et al (1993) and Valen-
tine (1989). Neglecting capillarity, virtual mass and lift, we
postulate180

fs = −ϕ∇T f +D(v−u) (5)
ff = −fs

Here the total fluid stress is T f =−P f + τf , where P f is
the fluid pressure and τf is the viscous contribution to the
fluid stress. The drag term exchanges momentum between185

the phases, with a coefficient D that is phenomenological;
Wallis (1969), Ergun (1952), Gidaspow (1994), Fan and Zhu
(1998), Dobran (2001), Panneerselvan et al (2007), Mazzei
and Lettieri (2007) among other sources, suggest values. As
ϕ→ 1 the effect of fluid forces becomes less important, rel-190

ative to frictional forces. When ϕ→ 0, the drag vanishes.
Following Mazzei and Lettieri (2007), we set

D =
3

4
Cd
ρfϕ|v−u|

d
(1−ϕ)−α (6)

where d is the mean particle diameter, α is a constant re-
lated to the constant n in Ricardson-Zaki equation Khan and195

Richardson (1989). According to Mazzei and Lettieri (2007),
this constant equals 2.80 either when Rep → 0 or Rep →∞,
thus we use α= 2.80 in equation 6. Finally, he drag coefi-
cient is assumed to be constant Cd = 1.

2.2 Scaling200

The characteristic thickness of the flowing granular material
is H and the characteristic length L. Scale x and y by L, and
z by H , time by the free fall time

√
L/g, and the x, y and z

velocities by
√
Lg and H

L

√
Lg, respectively. All stresses are

scaled by ρsgH . After scaling the mass balance equations are205

unchanged. Several terms in the momentum equations con-
tain the factor ε=H/L which is small; ε≈ 0.01−−0.001 is
not uncommon Iverson and Denlinger (2001). Writing x, y, z
for x1, x2, x3, the solid momentum balance equations be-

come210

∂t(ϕvx)+ ∂x(ϕvxvx)+ ∂y(ϕvyvx)+ ∂z(ϕvzvx) (7)

= ∂xεT
s
xx+ ∂yεT

s
xy + ∂zT

s
xz − ε

ρf

ρs
ϕ∂xT

f
xx

−ερ
f

ρs
ϕ∂yT

f
xy −

ρf

ρs
ϕ∂zT

f
xz +

D

ρs
(vx−ux)+ϕgx

∂t(ϕvy)+ ∂x(ϕvxvy)+ ∂y(ϕvyvy)+ ∂z(ϕvzvy) (8)215

= ∂xεT
s
xy + ∂yεT

s
yy + ∂zT

s
yz − ε

ρf

ρs
ϕ∂xT

f
xy

−ερ
f

ρs
ϕ∂yT

f
yy −

ρf

ρs
ϕ∂zT

f
yz +

D

ρs
(vy −uy)+ϕgy

ε(∂t(ϕvz)+ ∂x(ϕvxvz)+ ∂y(ϕvyvz)+ ∂z(ϕvzvz))(9)

= ∂xεT
s
xz + ∂yεT

s
yz + ∂zT

s
zz − ε

ρf

ρs
ϕ∂xT

f
xz220

−ερ
f

ρs
ϕ∂yT

f
yz −

ρf

ρs
ϕ∂zT

f
zz + ε

D

ρs
(vz −uz)+ϕgz

Note that components of gravity have been scaled by the
magnitude |g|, so (gx, gy, gz) is a unit vector.

With the same scaling, the fluid momentum become

∂t((1−ϕ)ux)+ ∂x((1−ϕ)uxux) (10)225

+∂y((1−ϕ)uyux)+ ∂z((1−ϕ)uzux)
= ∂xε(1−ϕ)T fxx+ ∂yε(1−ϕ)T fxy + ∂z(1−ϕ)T fxz

−D
ρf

(vx−ux)+ (1−ϕ)gx

∂t((1−ϕ)uy)+ ∂x((1−ϕ)uxuy) (11)
+∂y((1−ϕ)uyuy)+ ∂z((1−ϕ)uzuy)230

= ∂xε(1−ϕ)T fxy + ∂yε(1−ϕ)T fyy + ∂z(1−ϕ)T fyz

−D
ρf

(vy −uy)+ (1−ϕ)gy

ε(∂t((1−ϕ)uz)+ ∂x((1−ϕ)uxuz) (12)
+∂y((1−ϕ)uyuz)+ ∂z((1−ϕ)uzuz))

= ∂xε(1−ϕ)T fxz + ∂yε(1−ϕ)T fyz + ∂z(1−ϕ)T fzz235

−ε D
ρf

(vz −uz)+ (1−ϕ)gz

In summary, then, the proposed equation system consists
of the solid volume fraction ϕ, the three solid velocities v,
and three fluid velocities u . These variables evolve accord-
ing to the six momentum balance laws for the species, and240

the mass conservation relations for each species.

2.3 Constitutive Assumptions and Boundary Condi-
tions

The upper surface of the flowing mass at Fh(x,y, t) = 0 is
assumed to be a material surface and stress free. At the245

base of the mass, material is assumed to flow tangent to
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the basal surface Fb = 0, and to satisfy a sliding friction
law. For the solid constituent, this friction relation specifies
that the shear traction and the normal stress are proportion-
al: S|Fb

=−sgn(v)N |Fb
tan(φbed), where φbed is the basal250

friction angle and the −sgn(v) specifies that the shear trac-
tion opposes motion. For the fluid, the basal stress condition
will be addressed below.

We now discuss constitutive relations. A Coulomb consti-
tutive relation is postulated for the material. The Coulomb255

law is a nonlinear relation among the components of Ts, and
stipulated that material deforms when the total stress reach-
es yield, ||dev(Ts)||= κtr(Ts), where dev(Ts) =Ts−
1
2 tr(T

s)I is the stress deviator, tr(Ts) is the trace of the
stress (the sum of the diagonal components), I is the identity260

tensor, and κ is a material parameter, and that as deformation
occurs, the stress and strain-rate tensors are aligned. That
is, the alignment condition specifies dev(Ts) = λdev(V),
where the strain-rate V =− 1

2 (∇v+∇v
†) and † denotes the

transpose. To avoid a switching between plastic and non-265

plastic behavior, we assume the solid material is everywhere
in plastic yield.

The full Coulomb relations are too complex to be used
here. Two simplifications are proposed. First, at the basal
surface the boundary condition ensures proportionality and
alignment of the tangential and normal forces; we assume
the same proportionality and alignment holds throughout the
thin flowing layer of material. Written in components this
implies Tabs = νabTzz

s, where the proportionality constant
ν is a function of φbed. Second, following Rankine (1857)
and Terzaghi (1936), an earth pressure relation is assumed
for the diagonal stress components, Txxs = kapTzz

s, where

kap = 2
1± [1− cos2(φint)[1+ tan2(φbed)]]

1
2

cos2(φint)
− 1.

Here φint is the internal friction angle and the choice of the
plus or minus sign depends on whether flow is locally ex-
panding (the active state, with ∇ ·v > 0, and the − sign) or270

contracting (the passive state, with∇·v < 0, and the + sign).

3 Depth Averaging

The final step in the derivation is a depth averaging of the
mass and momentum balance equations. That is, for some
function f , we compute

1

|h− b|

h(x,y,t)∫
b(x,y)

f(x,y,z, t)dz = f .

Repeated use of the Leibnitz rule is made to interchange
integration and differentiation, and boundary conditions are
employed to evaluate terms at b and h. In addition, sever-275

al approximations must be made during the depth averaging
process. In what follows, we only briefly sketch the depth

averaging process, noting as appropriate those places where
approximations are made. Pitman and Le (2005) provides an
estimation of the errors typically made by these assumptions.280

The terms of order ε are assumed small and we hope to
drop all such terms from the model. However Savage and
Hutter (1989) argues that diagonal contributions to the sol-
id stress must be retained. Because there is no preferential
downslope direction in our applications, and the flow direc-285

tion may change during a flow, we retain the stress terms in
both the x- and y-directions, dropping only O(ε) terms in
the z-direction; see the discussion in Iverson and Denlinger
(2001). Other O(ε) terms are dropped.
Mass Balance Equation

∇ · (ϕv+(1−ϕ)u) = 0 .

says that the volume-weighted mixture flow is divergence290

free. That the mixture is isochoric allows us to depth aver-
age:

h∫
b

∇ · (ϕv+(1−ϕ)u)dz = 0 . (13)

Use the Leibniz rule to interchange differentiation and inte-
gration. The upper free surface Fh = 0 is a material surface295

for the mixture, so at z = h(x,y, t)

∂t(ϕh+(1−ϕ)h) + (ϕvx+(1−ϕ)ux)∂xh (14)
+(ϕvy +(1−ϕ)uy)∂yh − (ϕvz +(1−ϕ)uz) = 0 .

Likewise, at the basal surface Fb = 0 flow is tangent to the
fixed bed so300

(ϕvx+(1−ϕ)ux)∂xb (15)
+ (ϕvy +(1−ϕ)uy)∂yb− (ϕvz +(1−ϕ)uz) = 0 .

In arriving at these equations, we have ignored sedimenta-
tion, entrainment, and infiltration of fluid into the bed.

Using these formulae and algebraic manipulation,the305

depth averaged equation for the total mass of the solid and
fluid can be written

∂tĥ+∂x(ĥ(ϕvx+(1−ϕ)ux))+∂y(ĥ(ϕvy+(1−ϕ)uy)) = 0 .

(16)

In writing this equation, the depth averaged velocities are
ĥvx =

∫ h
b
vx dz, with a similar expression for the volume310

fraction ϕ and the other velocity components, where ĥ=
h− b.
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z-Momentum Observe that, upon setting ε→ 0 in the fluid
z-momentum equation, we find the fluid to be hydrostatic:

∂zT
f
zz = gz .

Integrating and imposing boundary conditions, we find

T fzz(x,y,z) = −gz[h− z] , (17)

and the average315

T
f

zz(x,y) = −1

2
gzĥ . (18)

In the same manner, for the solid z-momentum we find
equation for an effective stress:

∂zT
s
zz +

ρf

ρs
ϕ∂zT

f
zz = ϕgz .

Substituting,

∂zT
s
zz = (1− ρf

ρs
)gzϕ = (1− ρf

ρs
)ϕ∂zTzzf .

Thus the normal solid stress in the z-direction at any height is
equal to the (buoyancy) reduced weight of the solid material
overburden.

In scaling these equations, the z-velocities have been320

dropped. Of course neglecting motion in the z-direction is
a central component of a thin layer theory. Furthermore, any
contribution to the z-momentum from fluid shearing - terms
such a T fxz, T

f
yz - are dropped due to scaling. This obser-

vation suggests that only pressure contributions to the fluid325

stress are important, an assumption we will make below, al-
biet with a modification at the basal surface.
x- and y−Momentum We now must depth average the
remaining momentum equations. The nonlinearity of these
equations present difficulties in formulating a depth averaged330

theory. complicate the derivation, and in several places, it is
necessary to take the depth average of products of terms.
When necessary we approximate the required closure rela-
tion, for example as ϕf ≈ ϕf .

Consider first the equation for the motion of the solid
phase. The left-hand side of the x-momentum equation (7)
can be written

LHS = ∂tϕv
x+ ∂xϕv

x+ ∂yϕv
xvy + ∂zϕv

xvz .

Depth average and use boundary conditions to find335

h∫
b

LHSdz = ∂t

h∫
b

ϕvx dz+∂x

h∫
b

ϕvx2 dz+∂y

h∫
b

ϕvxvy dz

(19)

Now depth average the right hand side of (7):

h∫
b

RHSdz =−
h∫
b

(ε∂xT
sxx+ ε∂yT

sxy + ∂zT
sxz)dz

︸ ︷︷ ︸
(i)

(20)

−ρ
f

ρs

h∫
b

εϕ∂xT
fxx dz

︸ ︷︷ ︸
(ii)

+
D

ρs

√
L

g
(vx−ux)︸ ︷︷ ︸
(iii)

+

h∫
b

ϕgx dz .

In order to proceed, several assumptions are made:340

– This equation governs the motion of the solid phase, and
we assume the upper free surface for the mixture is a
free surface for both of the individual phases.

– The drag term D
ρs (vx−ux) is highly nonlinear and a

correct depth average is all but impossible to calculate.345

We postulate that a experiments could fit an averaged
phenomenological drag of a similar form.

– The earth pressure relation for the solid phase is em-
ployed. That is, the basal shear stresses are assumed to
be proportional to the normal stress:

T s∗z =− v∗

||v||
tan(φbed)T

szz ≡ α∗zT szz ,

where ∗ can be either x or y, and the velocity ratio en-
forces that friction opposes motion inthe designated di-
rection Savage and Hutter (1989); Patra et al (2005) The
α notation will provide a convenient shorthand that we
use in other places. Likewise the diagonal stresses are
taken to be proportional to the normal solid stress

T s∗∗ = kapT
szz ≡ α∗∗T szz .

Finally, following Iverson and Denlinger (2001), xy
shear stresses are determined by a Coulomb relation

T sxy =−sgn(∂yvx)sin(φint)kapT szz ≡ αxyT szz ,

where the sgn function ensures that friction opposes
straining in the (x,y)-plane.

– For the fluid phase, the basal shear stresses are assumed
to be proportinal to the square of the depth averaged
velocities Guo (1995); CCSH (2004):

T f∗z = ρfCfu
∗||u|| ,

where Cf is the friction coeficient. A physical approach
for the friction coefficient is the Colebrook-White equa-
tion Colebrook and White (1937), which for rough
channels can be approached as:

1√
Cf

=−2Log10
(

ks
14.8Rh

)
,
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where ks is the roughness of the channel and Rh is the350

hydraulic radii, which for shallow water problems can
be approaced as the depth of the flow.

For pure fuids, the diagonal stresses and shear stress are
zero.355

From Leibniz’s rule and the stress computations above, we
find

(ii) = −ερ
f

ρs

h∫
b

ϕ∂xT
fxx dz = (21)

−ερ
f

ρs
ϕ [∂x(

ĥ
2

2
(−gz))+ ĥ(−gz)∂xb ] .

Now using the fluid and solid stress relation T
szz

= (1−360

ρf

ρs )ϕT
fzz

, term (i) is approximated as:

(i) = −ε
h∫
b

∂xαxxT
szz dz− ε

h∫
b

∂yαxyT
szz dz (22)

−
h∫
b

∂zαxzT
szz dz

= −ε[∂x

h∫
b

αxxT
szz dz−αxxT szz|z=h∂xh

+αxxT
szz|z=b∂xb]− ε[∂y

h∫
b

αxyT
szz dz365

−αxyT szz|z=h∂yh+αxyT
szz|z=b∂yb]

−αxz[T szz|z=h−T szz|z=b] .

The upper free surface is stress free, so all terms involving
T szz|z=h vanish. The expression for (i) becomes

(i) = −ε(1− ρf

ρs
)∂x(ĥαxxϕT

fzz
) (23)370

−ε(1− ρf

ρs
)∂y(ĥαxyϕT

fzz
)

+(1− ρf

ρs
)(−εαxx∂xb− εαxy∂yb+αxz)(−gz)ĥϕ .

Note that the factor (−gz) originates in the evaluation and
depth averaging of the fluid stress; in typical flows, this factor
is positive.375

Combining all terms yields a solids x-momentum equa-
tion:

∂t(ĥϕvx)+ ∂x(ĥϕvxvx)+ ∂y(ĥϕvxvy) (24)

= − ε
2
(1− ρf

ρs
)∂x(αxxĥ

2
ϕ(−gz))

− ε
2
(1− ρf

ρs
)∂y(αxyĥ

2
ϕ(−gz))380

+(1− ρf

ρs
)(−εαxx∂xb− εαxy∂yb+αxz)ĥϕ(−gz)

− ε
2

ρf

ρs
ϕ∂x(ĥ

2
(−gz))

−ερ
f

ρs
ĥϕ(−gz)∂xb+(

D

ρs
)(ux− vx)+ ĥϕgx .

The y-solid momentum equation can be derived in a simi-
lar fashion.385

The equation for the fluid motion presents fewer difficul-
ties. The depth averaged x-momentum equation takes the
form

∂t(ĥϕfux)+ ∂x(ĥuxϕfux)+ ∂y(ĥϕfuxuy) (25)

= −1

2
ε∂xĥ

2
ϕf (−gz)− (

D

ρs
)(ux− vx)+ ĥϕfgx390

+ϕfCfu
x||u|| .

Where ϕf = 1−ϕ. Again, the fluid y-momentum equation
has a similar form. Note that if ϕf → 1 equation 25 be-
comes the typical shallow water approach of hydraulics
Chow (1969) (Kowalski (2008) describes how debris flows395

exhibit a shallow flow geometry as well).
This equation system is then solved using the finite volume
method, whose solution provides results of the velocity field,
flow depth and the volumetric concentration of solids at the
center of the each finite volume computational grid. The bulk400

density can be calculated from:

ρ= ρsϕ+ ρf (1−ϕ) (26)

Then, we obtain the dynamic pressure p from:

p=
1

2
ρv2 (27)

where v is the speed of the flow. The use of the impacting405

dynamic pressure information on structures and living
beings allows to estimate levels of damage, as in Valentine
(1998); Valentine et al (2011); Jones (2012), useful for
vulnerability analysis.

410

The numerical solution of the above set of equations
presents strong numerical sensitivity to small changes
and Digital Elevation Model (DEM) errors. To solve the
balance laws, we use the parallel, adaptive mesh, Godunov
solver developed by Davis (1988) already implemented in415
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Patra et al (2005) and Pitman and Le (2005). The adaptive
meshing is used as well, which allows to have very fine
grids where indicators show high gradients, and coarser
grids where low gradients are detected. The time step is
adjusted from a Courant et al (1928) like condition. The420

complexity of the equation system results in typical time
steps of the order of 10−4. However, the maximum time
step allowed was reduced from 10−1 s used within Titan2D
to 10−3 s to ensure stability. As result, Titan2F become a
computationally expensive tool.425

Another source of numerical difficulties arise from the
DEMs and the quality of that maps. The DEMS can have
regions where elevations are not well defined, they can have
crossed contour levels or even infinite holes. Abrupt terrain430

changes, both actual or DEM artifacts, cause computations
of gradients and curvatures to become unstable. In order to
avoid such a numerical problems patching and intelligent
smoothing of the DEMs was needed.

435

There are four major differences between the present paper
and Pitman and Le (2005):

1. In Pitman and Le (2005), mass and momentum conser-
vation laws are derived for the solid material and for the
phase averaged mixture of solid and fluid, whereas here440

the final model presents mass and momentum equations
for both individual phases.

2. Any two phase model system must postulate several
phenomenological functions, such as inter-phase drag
coefficient. In the present derivation these functions are445

better adapted to geophysical flows whose fluid phase
corresponds to water and the solid phase are rounded
solid particle.

3. The volumetric particle concentration is not a fixed pa-
rameter, which in our approach is calculated for every450

time steep and grid point. When the particle concentra-
tion vanishes, the solid phase role in the equation sys-
tem vanishes as well. In that way, the equation system
becomes the typical hydraulic shallow water approach

4. The only input parameters need by the program are the455

location of the pile of material, its volume and the volu-
metric solids concentration. The friction coefficients are
no longer needed as input as they are authomaticaly ad-
justed accoding to the evolution of the volumetric frac-
tion of solids across the grid and time. The bed and in-460

ternal friction at set in such way that when the velo-
metric fraction of solids tends to an assumed maximum
packing concetration (ϕ= 0.65), both internal and bed
frictions tends to the values used in that cases in Titan2D
(0.35).465

4 Validation and verification

In order to validate and verify the proposed approach, we
did a series of tests using a one dimensional approach of the
proposed equation system. First we test the consistency of
the results verifying the expected symmetries. Then we used470

an exponentially decaying topography with and without
obstacles (bumps). They show expected features like how
the mathematical model can show a reflected wave when
the bump was big enough or the flow splitting in a reflected
dense part and bump overpass by a very dilute flow.475

Verification of the accuracy of the code was done with
analytical solutions of the Dam Break problem and with
several experiment results. Among them, we check the
deposited pattern predicted by the program with the results480

shown by Liu Liu (1996). The prediction of the arrival
time and the flow depth profile was compared with the
experimental results shown by Iverson et al (2010) fron his
recent work done on his large channel facility.

485

Analytical solutions for shallow water problems are
scarce. Only one dimensional analytical approaches are
available in the litereture, especially for the well known Dam
Break problem (e.g. Dressler (1954); Mangeney et al (2000);
Fernandez-Feira (2006); Ancey et al (2008); Wrachien490

(2009)). Unfortunately, analytical solutions for geo-mass
flows are almost imposible to find due to the complexity of
the the non-linear partial differential equations Pudasaini and
Hutter (2007). Such solutions can be obtained only in special
cases like the similarity based solutions proposed by Savage495

and Hutter Savage and Hutter (1989) for dry avalenches. In
our test we use the solution proposed by Fernandez-Feira
(2006) for the Dam Break problem on an incline for pure
water. In our program we assume ϕs→ 0. Figure 6 shows
a comparison of the Two-Phase-Titan prediction with this500

analytical solution. At least for the one dimensional case,
the program successfuly reproduces analytical solutions
for different initial conditions down to very low paricle
concentrations (less than 1%).

505

Liu (1996) performed several experiments for geo-mass
flows in an inclined channel. He modified the initial vol-
ume, the channel slope and the particle concentration to
find the final size of the debris flows meassured by their
resulting width and length. We reproduced experimental510

final width and length after the simulation reached the
same time corresponding to the duration reported by Liu.
Figure 6 shows the correspondense of the model with
the experiments for a) the width of the deposit and b)
the length. A Pearson correlation shows that 90% of the515

experimental data for the deposit lenght can be explained
with the predictions of Titan-Two-Phase, whereas 80%
of the data for the deposit width can be explained by the
predictions of the program. This ilustrates the high accuracy
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of the program in predicting the deposit characteristics for520

different initial volumes and high initial solid concentrations.

The experiments performed by Iverson and co-workers
Iverson et al (2010) done on a 95 m long artificial channel
was used to verify the accuracy of the predictions of the525

flow front arrival time and the temporal evolution of the flow
depth. These flows were unsteady and nonuniform. Iverson
et al. Iverson et al (2010) show time series data for several
meassured properties: flow thickness, pore pressure, basal
normal stress and arrival time of the front. Raw data sent530

to us by Dr. Iverson were used to test the Two-Phase-Titan
prediction concerning time evolution of the flow depth and
arrival times at the check points located at 32 m and 66
m distance from the lock. As shown in Figurea 6 and 6,
the arrival time and the teporal evolution of the predicted535

depth fits very well within the confidence interval of the
experiments.

The range of concentrations that the program cope with,
are from ϕs = 10−8 (almost pure water) to ϕs = 0.65540

(maximum packing concentration). Finally, as expected, the
program predicts high particle concentrations at the front
of the flow and low particle concentrations at the tail of the
flow (at some cases, even near pure water concentrations,
or ϕ→ 0), as can be seen in Figure 6 where a longitudinal545

solids particle distribution predicted by Titan2F is shown.
The predictions fits with Iverson et al (2010) observation
that the tail of the flow remains very watery. Using predicted
concentration of solids, the density is assessed (equation 26)
and together with the speed of the flow, the dynamic pressure550

distribution is calculated as well (equation 27). Figure 6
shows longitudinal and cross distributions of the dynamic
pressures after 32 s simulation. As the flow velocity at lateral
limits of the flow from the end of the channel are very low,
the dynamic pressure shows to be low as well. Knowledge555

of the dymaic pressure information is of vital importance in
risk analysis as structural damage and risk for human life
can be assessed from it.

Verification with actual mud flows has been done as well,560

showing very good fit with field data. For example, Sheridan
et al. (2011) shows that the Titan2F predictions are within
10% of the data shown by Procter et al (2010) for the highly
channeled mud flow at Ruapehu, New Zealand. In addition,
the theory was tested against field data assessed by Williams565

et-al. (2008) for the 2006 Vazcun creek lahar at Tungurahua
volcano, Ecudor, as shown by Cordoba et al (2015), where
Titan2F predictions about velocity are within 10% and within
15% for the meassured super-elevation.

5 Conclusions570

In this paper we present a new computational two phase tool
for lahar hazard assessment that has no constrains on initial
volumentric particle concentration. The program computes
space-time evolution of the particle concentration, flow
depth, velocity field and dynamic pressure at each ponit of575

the computational grid.
The model is valid for two phase flows whose phases
consist in solids and water. However, the phenomenological
approach used for the interphase drag model assumes an
average diameter of the solids, which mean individual boul-580

ders or particles cannot be tracked. In addition, the model
is depth averaged, assuming thin layer and shadow water
approaches. Thus, our model correctly predicts the dynamic
of gravity driven flows providing the depth averaged values
for the particle concentration, flow and phases velocities and585

flow depth in a three dimensional topography. In order to
model other kind of geophysical mass flows, adjustments
to the code must be done, for example pyroclastic flows
can be modeled if the flow density of the fluid phase is
appropriately addressed (eg. thermocoupled air density us-590

ing ideal gas law and an additional equation for temperature).

The proposed mathematical approach allows to study the
whole range of flow behaviour. Regions with almost pure
fluid to regions of friction dominated flows are correctly595

described by the algorithm. Using this information, dynamic
pressure is deduced, which becomes a very useful tool for
risk assessment.

The highly non-linear coupled equation system makes600

the time step very small. The use of this neew tool on
natural terrains or detailed Digital Elevetion Models (DEMs)
requires higher computational power than the one provided
for home PCs. The use of a high velocity Work Station with
multiple cores is adviced.605

Important processes that are not addressed by this tool in-
clude the effect of turbulence, incorporation of solid mate-
rial from the bed of the channel, and incorporation of water
into the flow from existing water bodies. Nevertheless, this610

two-phase flow is an important step forward in forming an
aceptable computational model for simulating a hazardous
natural phenomena. Currently, we are applying this tool for
real lahar hazard assessments like in Cordoba et al (2015).
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Abb. 1. Dam-break 1D problem. Analytic and Two-Phase-Titan solutions with different initial conditions. Evolution of the flow front depth
with distance

Abb. 2. Graphic comparison of the predictions of Two-Phase-Titan for the experiments performed by Liu (1996). The results for several
initial volumes compare a) the width of the deposit and b) the length of the deposit. The circles show data from the experiments, and the
asterisks the predictions of Titan2F.

Abb. 3. Verification of the accuracy of the Two-Phase-Titan predictions for the time evolution of the flow depth and arrival of the front at 32
m distace from the lock. The dotted lines represent the confidence interval of the experiments performed by Iverson and co-workers Iverson
et al (2010)



12 G. Córdoba et al.: A 2-phase pseudo-3D Model of Debris Flows

Abb. 4. Verification of the accuracy of the Two-Phase-Titan predictions for the time evolution of the flow depth and arrival of the front at 66
m distace from the lock. The dotted lines represent the confidence interval of the experiments performed by Iverson and co-workers Iverson
et al (2010)

Abb. 5. Longitudinal distribution of the particle concentration after 14 s. The particle concentration at the upper part of the channel are very
low, whereas at the end, the front of the flow becomes very concentrated, as observed by Iverson et al (2010).
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Abb. 6. Longitudinal distribution of the predicted dynamic pressure at 14 s. The peak over-pressure occurs just at the end of the inclined part
of the channel.


