Application of flood risk modelling in a web-based geospatial decision support tool for coastal adaptation to climate change

P. J. Knight¹, T. Prime¹,², J. M. Brown², K. Morrissey¹, and A. J. Plater¹

¹Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Roxby Building, Chatham Street, Liverpool L69 7ZT, UK
²National Oceanography Centre Liverpool, Joseph Proudman Building, 6 Brownlow Street, Liverpool L3 5DA, UK

Received: 16 January 2015 – Accepted: 4 February 2015 – Published: 25 February 2015
Correspondence to: P. J. Knight (philip.knight@liverpool.ac.uk)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

A pressing problem facing coastal decision makers is the conversion of “high level” but plausible climate change assessments into an effective basis for climate change adaptation at the local scale. Here, we describe a web-based, geospatial decision-support tool (DST) that provides an assessment of the potential flood risk for populated coastal lowlands arising from future sea-level rise, coastal storms and high river flows. This DST has been developed to support operational and strategic decision making by enabling the user to explore the flood hazard from extreme events, changes in the extent of the flood-prone areas with sea-level rise, and thresholds of sea-level rise where current policy and resource options are no longer viable. The DST is built in an open source GIS that uses freely available geospatial data. Flood risk assessments from a combination of LISFLOOD-FP and SWAB models are embedded within the tool; the user interface enables interrogation of different combinations of coastal and river events under rising sea-level scenarios. Users can readily vary the input parameters (sea level, storms, wave height and river flow) relative to the present-day topography and infrastructure to identify combinations where significant regime shifts or “tipping points” occur. Two case studies are used to demonstrate the attributes of the DST with respect to the wider coastal community and the UK energy sector. Examples report on the assets at risk and illustrate the extent of flooding in relation to infrastructure access. This informs an economic assessment of potential losses due to climate change and thus provides local authorities and energy operators with essential information on the feasibility of investment for building resilience into vulnerable components of their area of responsibility.
1 Introduction

Society has entered a new era of climate change – one where the environmental consequences of warming are being observed and experienced directly, in which the absence of timely, strategic intervention across the global community has taken us closer to more uncertain (non-linear, stochastic) and potentially more catastrophic change in the medium- to long-term (Lowe et al., 2009). With atmospheric CO$_2$ concentrations having reached 400 ppm (WMO, 2014), exceeding the “safe” threshold of 350 ppm, we’ve entered the period of “dangerous” climate change bearing witness to unprecedented loss of Arctic ice (Hodgkins, 2014) and accelerated rates of melting of the West Antarctic Ice Sheet (Sutterley et al., 2014). Set within this regime shift, sea-level rise during the 21st Century may follow the trajectory of semi-empirical assessments (e.g. Jevrejeva et al., 2012, 2014) rather than the more conservative projections of the IPCC 5th Assessment Report (Church et al., 2013). To avoid adaption planning being tied exclusively to institutional consensus on climate change projections, there is an urgent need for tools that provide decision-makers with the opportunity to explore different potential futures in an open and informed environment (cf. Nicholls, 2002; Penning-Rossell, 2015). Future sea-level rise coupled with changes in the magnitude and frequency of storm surges is a key focus for such a decision-support tool because of the high (and growing) proportion of the World’s population and associated infrastructure that occupies low-lying coastal regions (McGranahan et al., 2007; Nicholls et al., 2011; Hallegatte et al., 2013).

A Decision Support System (DSS) is computer-based software that can assist policy makers and resource managers in their decision process (Iyalomhe et al., 2013). Within this definition there are sub-categories which are often used to describe environmental DSS: spatial Decision Support Systems (SDSS) and Environmental Decision Support Systems (EDSS) (Iyalomhe et al., 2013). Shim et al. (2002) describe a SDSS for integrated river basin flood control using real-time data, model data and a GUI interface flood control within a river basin. According to Matthies et al. (2007) a typical
EDSS consists of a collection of environmental models, databases and management tools, which are integrated within a graphical user interface, that can utilise the spatial functionality provided by graphical information systems (GIS). These DSS can provide evidence for decision makers in the sustainable management of natural resources and enable impact assessments of possible future adaptation and resilience. They can also be used to assist local planners and emergency response personnel to better prepare and respond to sudden and/or extensive flooding events.

Following on from these types of systems are web-based geospatial tools (hereafter referred to as Decision-Support Tools, DST) that address the problems of earlier forms of DSS, in that they are easier to use and are more accessible to stakeholders and decision makers (Hearn et al., 2006; Hearn, 2009), while at the same time providing detailed information. For example, the US Geological Survey Flood Inundation Mapper (http://wim.usgs.gov/FIMI) displays real-time river data and flood forecasts. This example also includes mechanisms to incorporate results from flood mapping tools such as the HAZUS-MH (Hearn et al., 2013). The HAZUS-MH loss-estimation software provides data outputs for the economic and infrastructure loses due to flooding events. It is computationally intensive and is run offline, but provides the output in a Web GIS compatible format. Likewise the Coastal Flood Atlas (http://www.usgs.gov/climate_landuse/lcs/projects/web_gis.asp) displays modelled scenarios of flooding from storm surges along the East and Gulf Coasts of the USA and incorporates estimates for the resulting economic and infrastructure losses. Furthermore, the National Oceanic and Atmospheric Administration have developed a GIS awareness tool to display the resulting flooding (inundation) from storm surges along the US coastal states vulnerable to hurricanes. These worst case flooding scenarios were constructed from the results of running a numerical model for hypothetical storms with different wind categories and high tide.

The web-based DST described here illustrates the potential flood risk for populated coastal lowlands arising from future sea-level rise, storms and high river flows. This DST supports operational (immediate) and strategic (long-term, i.e., 10–100 years) de-
cision making through the provision of an interface that enables the user to explore: (i) areas and infrastructure presently at risk of flooding from extreme events, (ii) the extent to which this flood hazard changes with sea-level rise, and (iii) thresholds or “tipping points” where current policy options are no longer viable for locations at high risk of flooding. The DST is built in an open source GIS that uses freely available geospatial data. Assessments of areas prone to flooding from a combination of inundation and wave-overtopping models are input to the DST, where the user interface enables interrogation of different combinations of coastal and river events under rising sea-level scenarios. Within these options, established climate change projections (e.g., UKCP-09) may be highlighted to provide stakeholders with an “industry standard” assessment that feeds into strategic policy responses. Examples are also given where coastal stakeholders can readily vary the input parameters relative to the present-day topography and infrastructure to identify combinations where significant regime shifts may occur.

Two case studies are presented that demonstrate the attributes of the DST with respect to strategic and operational planning for a coastal community and the energy sector. In the strategic case study the examples report on the assets that are prone to flooding, illustrate the extent of flooding in relation to energy infrastructure access, and assess the likely depth and hazard that extends well beyond planar assessments of respective elevation (i.e. land surface altitude vs. extreme level) (Bates et al., 2005). This can underpin an economic assessment of potential losses due to climate change and thus provides coastal users and energy operators with essential information on the feasibility of investment for building resilience into the present-day system to sustain long-term operations under future climate conditions. In the operational case study, examples show how storm surge forecasts and tidal predictions can support short-term decision making during events to limit impacts (e.g., life, well-being, economic costs) and to support effective deployment of resources.
2 Web-based geospatial tools

There are many technologies and methods available for building a web-based geospatial decision-support tool (DST), however, this DST has been specifically developed to be easily upgraded and to make use of Open-source components with free licences. It has been designed to allow for additional functionality to be incorporated and to allow inclusion of improved flood scenarios. The Glossary section contains descriptions of some of the less common technical terms and components used to develop this web-based tool.

The DST is built with two main website components (McBride, 2014): Bootstrap running within a PHP environment provides the HTML in a Javascript and CSS style sheet, while Leaflet (Agafonkin, 2014), a Javascript library, provides the mapping framework. Slider bars have been developed using a jQuery Javascript library so users can easily vary the input parameters. The back-end database used is POSTGRES with PostGIS added to provide the storage and query of information about location and mapping. Additional data are imported as GeoJSON files from Web Feature Servers and other sources. Two mapping systems are used for base maps: OpenStreetMap (OSM, 2014) and Ordnance Survey (OS OpenData via Edina, 2014).

3 Case studies

Two UK case studies (see Fig. 1a) demonstrate how stakeholders can use the current version of the DST: the first is a strategic coastal community case study located at Fleetwood, NW England (Fig. 1b) based on flooding from storm surges, waves and river flows; the second is an operational case study focused on the energy infrastructure at Oldbury-on-Severn, SW England (Fig. 1c) based on a storm surge event in January 2014.
3.1 Strategic case study: Fleetwood, UK

Fleetwood is a coastal town located in the Wyre District, Lancashire, NW England. It has a population of around 26,000 people. The town is situated on a predominately sandy peninsula, around 3 km wide, bounded to the east by the River Wyre, to the north by Morecambe Bay and to the west by the Irish Sea. The land is extremely flat – the highest part is situated around The Mount, where most of the original town developments took place. Much of the north and west of the town are just above the highest tidal level. There have been two major, historic coastal flooding events: in 1927 and 1977. The 1927 event caused a breach in the sea wall resulting in loss of life as well as flooding (Times Digital Archive, 1927), while the 1977 event caused greater flooding to properties (Wyre Council, 2013). The Highest Astronomical Tide (HAT) at Fleetwood is 5.56 m Ordnance Datum (OD), Mean High Water Spring Tide (MHWS) is 4.21 m OD and the maximum tidal range is 10.17 m. Tidal predictions were computed using the POLTIPS-3 tidal prediction software provided by the NOC Marine Data Products Team. At Heysham, 14 km to the north of Fleetwood, the highest storm surge recorded was 1.6 m in 1988 (NTSLF, 2014).

3.2 Operational case study: Oldbury-on-Severn, UK

Oldbury-on-Severn is a relatively small rural village located within the South Gloucestershire region, SW England. It is situated alongside Oldbury Pill, a small river which flows into the Severn Estuary. The surrounding area is mainly used for agriculture, and there is also a decommissioned Magnox nuclear power station situated 2 km to the north-west. Although the power station ceased operating in 2012, there are operations taking place related to the decommissioning and maintenance processes which will be ongoing for many decades. In addition there are plans for a new nuclear power station to be sited just to the north of the current site.

The surrounding low-lying land, typically between 5.0 to 7.5 m OD, is drained by small channels known locally as rhines. In this area they drain towards a pumping sta-
4 Flood modelling

Flood scenarios were generated using the LISFLOOD-FP flood inundation model, originally developed by Bates and De Roo (2000). Additional LISFLOOD-FP inputs for waves were computed using the Shallow Water And Boussinesq (SWAB) model developed by McCabe (2011). Environment Agency 2 m resolution airborne laser altimetry (LiDAR) data were interpolated onto a 10 m grid to reduce model computation time. Sea defences were adjusted by replacing the interpolated value with the highest 2 m data point within the 10 m grid box to reincorporate them after feature smoothing.

The case study based on Fleetwood (Fig. 1) is used to display data and flood scenarios taken from Prime et al. (2015). The scenarios consider the economic impact of flood events from sea-level rise, storm tides, wave overtopping and high river flow. A full explanation of the cost analysis and the implications for coastal planners can be found in Prime et al. (2015). Each scenario within the Fleetwood case has been computed using time-varying boundary conditions along the coastline, which are constant in space and represent storm time (tide plus surge) elevations. Furthermore, the tidally varying boundary conditions consist first of Extreme Water Levels (EWLs: still-water levels only, i.e., surface wave fluctuations are not included). Additional boundary forc-
ing is then incorporated at the coastal defences to consider the influence of Extreme Wave Heights (EWHs) and also at the upper estuary boundary to include Extreme River Levels (ERLs). Further scenarios were generated by applying a sea-level rise in 10 cm increments. To simplify the web-based interface, EWLs are labelled as *storm level*, EWHs are labelled as *wave height* and ERLs are labelled as *river flow*. Although the user selects a return level for the EWH or ERL the information input into the inundation model is the consequent time-varying wave overtopping rate and river discharge that would occur in response to that forcing locally.

The case study data for Oldbury-on-Severn, SW England (Fig. 1) have also been computed using the same LISFLOOD-FP techniques described in Prime et al. (2015), but without the economic cost analysis, and without wave and river inputs because this location is largely protected from waves due to its location within the Severn Estuary (Magnox, EU Stress Test Report for Oldbury, 2011), and has a relatively small flood risk contribution from the Severn when compared with the contribution from the Extreme Water Level. Extreme precipitation events within the catchment behind the sea defences are an additional source of flooding, however, this was not included as part of this case study.

As with Fleetwood, each scenario for the Oldbury-on-Severn case study has been computed using time-varying boundary conditions along the coastline, which are constant in space and represent storm time (tide plus surge) elevations. Again, each tidal curve was adjusted to include a localised storm surge shape, as described within the *Practical Guidance Design Sea Levels* (EA, 2011b) and *Design Sea Levels* manuals (EA, 2011a). Since a curve was not available for Oldbury-on-Severn, the storm surge shape for Avonmouth was used to represent all locations along the modelled coastline. This resulted in a set of scenarios in 10 cm increments from a 1 : 1 year EWL to a 1 : 10 000 year EWL event. As an additional element of the Oldbury-on-Severn case study, a “tipping point” analysis was undertaken whereby a visualization of future sea-level rise in 10 cm increments enables the user to explore critical extreme level elevations at which significant changes in flood risk, or at least the area prone to flood-
ing, take place. The purpose here is to provide an understanding of where present defence strategy, e.g. “hold the line”, will no longer be viable under present operational resourcing.

Every scenario for each case study produced a data set of maximum flood extent in the standard ESRI ASCII raster format. These were visually checked using the desktop Quantum GIS (QGIS). They were then transformed using the GDAL library scripts into smaller tiles following the OSGeo Time Map Service (TMS) specification. This allowed zooming functionality to be incorporated within the map server set up.

4.1 Results for Fleetwood, UK

Figure 2a–d shows a selection of images from the web-based DST. Users can control the display of the spatial element and the menu. The spatial element displays the zoom-enabled base map and the superimposed flooding scenario chosen from the menu slider system. The base map used for these scenarios was OpenStreetMap. The menu displays the scenario control, flood analysis results and information overlays. With the menu slider bars, the user can vary sea-level rise, storm level, wave height and river flow and view the resulting scenarios in a spatial flood map. The “minor sub-stations” overlay box has been ticked (minor sub-stations are denoted by red markers) to show the density of electricity infrastructure across Fleetwood and the surrounding area. The summary cost analysis results of the corresponding scenario can also be displayed, with links to further analysis and downloads. Figure 2a shows the slider bars set to: sea-level rise (0.6 m), Storm level (1 : 250 yr), Wave height (none applied), and River flow (none applied). The summary flood analysis within the menu display includes a cost analysis breakdown according to land-use type of the chosen flood scenario: arable land GBP 0.16 M (area flooded 1.069 km2), Residential housing GBP 47.68 M (area flooded 0.123 km2), Roads GBP 0.23 M (area flooded 0.442 km2), and Industrial GBP 0.81 M (area flooded 0.03 km2).

Figure 2b shows the sliders bars set to Sea-level rise (0.6 m), Storm level (1 : 250 yr), Wave height (1 : 100 yr), and River flow (none applied). A substantial increase in the
area prone to flooding can be observed (shaded in light blue) relative to Fig. 2a on both sides of the River Wyre, with a substantial area of urban land-use flooded within Fleetwood. Figure 2c shows the sliders bars set to Sea-level rise (0.6 m), Storm level (1 : 250 yr), Wave height (none applied), and River flow (1 : 50 yr). In this case, flooding due to wave overtopping in reduced and the urban area prone to flooding is reduced relative to Fig. 2b and located away from the marine shoreline. Lowland areas either side of the Wyre channel are flood-prone due to the high river levels. A combination of extreme water level, wave overtopping and high river flow is given in Fig. 2d in which the sliders bars are set to Sea-level rise (0.6 m), Storm level (1 : 250 yr), Wave height (1 : 100 yr), and River flow (1 : 50 yr). Although the general location and extent of flooding is similar to that shown in Fig. 2b, local detail shows a marked difference in the flood-prone urban area to the east and south-east of the Fleetwood.

4.2 Results for Oldbury-on-Severn, UK

The following describes how the DST can be used operationally to support the deployment of resources immediately before and during an event, for example during a recent event in January 2014 when a large tide coincided with a medium sized storm surge. This event was one in a series experienced in the UK, leading to the stormiest winter on record (Matthews et al., 2014). On the 2 January 2014 the storm surge two-day forecast (NTSLF, 2014) issued for individual high waters varied between 0.30–0.99 m, while the predicted astronomical tide ranged between 7.83–8.08 m OD. The storm surge forecast at Oldbury-on-Severn was 0.82 m which when combined with the predicted astronomical tidal high water at 08:47 on 3 January gave a total storm level of 8.9 m OD.

Figure 3a and b shows screen shots from the web-based display for Extreme Water Levels of 8.9 and 9.5 m OD, respectively, and display the corresponding flood mapping scenarios. In this case the menu system displays the latest operational storm surge forecasts. The base map used for these scenarios was from the Ordnance Survey (OS, 2014). Local power infrastructure information such as major sub-stations (denoted by
red boxes) and electricity pylon routes (denoted by thick blue lines) can be overlaid by selecting (ticking) the appropriate boxes. Using this information the stakeholder can view pre-computed flood maps based on the total extreme levels by moving the relevant slider bars, and hence explore “what if scenarios” in support of their own evaluations of risk or, indeed, how actions and deployments might need to evolve during the course of an event. In these examples the site of the former nuclear power station at Oldbury-on-Severn is unaffected since it is relatively well protected and built upon a platform above 9.9 m OD, however, it is possible to display the more extreme scenarios to determine the flood hazard in relation to access roads (e.g. for timely site evacuation or the effective intervention of emergency measure and services).

Subsequent analysis of the tide gauge data at the Oldbury-on-Severn nuclear power station suggested that the Extreme Water Level was closer to 8.5 m OD. This did not breach the Environment Agency (EA) sea defences as is also evident in the scenario with the Extreme Water Level set to 8.9 m OD. However, the sailing club at Thornbury (see Fig. 3a) did experience flooding (Thornbury Sailing Club, personal communication and the club’s newsletter, 2014). The sailing club is located on a triangle of land at the entrance to the Oldbury Pill between the high water mark and the EA sea defences. Consequently it is more vulnerable to flooding than sites behind the main sea defences. Figure 3a shows a scenario in which flooding in this triangle occurs for an Extreme Water Level of 8.9 m OD, representing a storm level return period of 1 : 5 years. The sailing club has started to adapt to these types of flooding events by building localised defences and installing boat and dinghy storage on stilts (Fig. 4a and b).

Figure 4c shows the flood gate at the Oldbury Pill, near to the sailing club (see Fig. 3a). Debris can be seen in the foreground indicating the water level of a recent event. Figure 3b shows the results from the scenario with the Extreme Water Level set to 9.5 m OD. In this case there are two breaches: one at the Oldbury Pill flood gate and another smaller one just to the north, as indicated in Fig. 3b. This scenario represents a return period storm level of 1 : 100 years.
A “tipping point” visualization is presented in Fig. 5 as a sequence of maps illustrating the extent of potential flooding arising from a 1 : 5 year EWL combined with sea-level rise of between 0.0 and 1.0 m in 10 cm increments. It is apparent that a significant shift in the area at risk from EWL flooding occurs at 0.5 m SLR, with considerable increases in areal extent thereafter. In this case, it would appear that the current shoreline management plan strategy and resourcing would not require significant re-evaluation until this threshold is reached, enabling stakeholders to then explore further when this tipping point might be reached or how likely it would be reached following a given decision-making time horizon. Whilst this is perhaps more strategic in its focus, the analysis also shows how operations would need to deal with quite different extents of flood hazard.

5 Discussion

It has become more and more evident that our understanding of potential climate change impacts requires regular revision and reflection. This is not only a logical consequence of improving understanding of the fundamental science and system interdependencies but also how the climate-ocean-cryosphere system has changed through time, irrespective of actions to limit emissions. Although the Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (Church et al., 2014) provides an update on the scientific consensus on future sea-level change, other plausible low-probability sea-level projections provide a different set of sea-level futures (Vermeer and Rahmstoo, 2009; Jevrejeva et al., 2012, 2014). At the same time, local government, regulatory authorities and coastal stakeholders have become almost constrained by an “industry standard” set of climate projections, in the UK provided by UK Climate Impacts Programme (UKCP-09) (see: http://ukclimateprojections.metoffice.gov.uk/22568). Coupled with these projections of sea-level rise and storms, the coastal stakeholder community is presented with an array of approaches for probabilistic risk assessment linked to different emissions scenarios and climate system responses.
(Nicholls, 2004; Dawson et al., 2005; Hall et al., 2006; Purvis et al., 2008; Nicholls et al., 2011; Lewis et al., 2011). Consequently, it is essential to fully engage with information needs of coastal decision makers and stakeholders in designing accessible and easy to use geospatial tools that enable a range of climate change scenarios to be explored in an open and informed way (de Moel et al., 2009; Dawson et al., 2011; Wadey et al., 2013). Furthermore, these tools must acknowledge that decisions are made within over-arching environmental, economic and societal contexts (McGranahan et al., 2007; VanKoningsveld et al., 2008; Dawson et al., 2011), but where institutional priorities are not necessarily constructed in a socially inclusive framework. This DST provides scenarios based around coastal flooding caused by storm surges, waves and river levels, and combined with predicted sea-level rise scenarios. In addition to being applied in a strategic sense, examining changes in the nature and extent of flood-prone areas, the DST can be used to support flood management operations when extreme water levels (storm, waves and rivers) are forecast to be close to the sea defence height limits.

Other similar DSTs have been developed to display scenarios of coastal flooding from storm surges. For example, the NOAA (2014) educational and awareness mapping tool (using ArcGIS Server) shows the worst case flooding events based upon the results from running numerical models with probabilistic hurricanes and high tides. The DST described here has taken a slightly different approach by displaying flood scenarios based on using Extreme Water Level statistics as boundary conditions for the LISFLOOD-FP inundation model. Furthermore, it provides the options to include additional contributions from flooding due to wave overtopping and river flows. Also, by focusing on small areas, like Fleetwood and Oldbury-on-Severn, it is feasible to compute many more scenarios (e.g., smaller increments of sea-level rise over a broader range of elevations) with finer spatial resolutions (e.g., 10 m grid). This improves the flooding estimates by taking into account smaller features within the Digital Elevation Model (DEM).
In addition to providing considerable detail on areas prone to flooding from future storms and sea-level rise, the Fleetwood DST clearly demonstrates the differential susceptibility of the urban area and energy infrastructure to wave overtopping and river flow, both in isolation and combination. By including SWAB model outputs within the modelling a range of flooding scenarios based upon wave overtopping have been included. Previous historical events have shown that large amounts of water have transferred over the sea defences by wave action without a breach taking place (Wyre Council Coastal Engineers (personal communication) and Wyre, 2014) or the still water level exceeding the sea defence heights. In terms of the key strategic benefits of the DST, these range from simple exploration of the relative significance of different drivers of flood hazard (and their combination) to being a user-friendly tool that does not require specialist knowledge or access to expensive software. The Fleetwood case study demonstrates how the DST can be used to support strategic decisions over the medium- to long-term in relation to flood defence options; this is illustrated further by the Oldbury-on-Severn “tipping point” analysis. In essence, the DST allows for the user to explore where flooding is likely under different combinations of sea-level rise, storm magnitude, wave height and river discharge, and how these areas are likely to change in location and extent in the future with projected sea-level rise. Consequently, the DST provides a mechanism for visualizing how future flood hazard compares with the present, and thus how and where shoreline management planning may need to change according to the scale of the problem. In terms of mapping, the DST also helps to user to identify where key strategic interventions could be located to afford an effective level of reduced risk for a sizeable asset base over a good vertical range of sea-level rise.

The Coastal Flood Atlas displays modelled scenarios of flooding from storm surges along the East and Gulf Coasts of the USA and incorporates estimates for the resulting economic and infrastructure losses. Likewise this DST shown here for Fleetwood can incorporate estimates for the economic and infrastructure losses, and also includes scenarios based upon sea-level rise for the next 100 years. A more detailed discussion of the Fleetwood case study in relation to the costs implications of coastal flooding.
can be found in Prime et al. (2015), however, the results shown here give the decision maker the opportunity to explore the likely financial consequences of various scenarios. For example, based upon comparing the wave and river scenarios separately, a decision maker for Fleetwood may conclude that it would be more cost effective to upgrade the defences along one side of the river, allow flooding across rural land to the east of the town and keep the western sea defences at the same height.

The Oldbury-on-Severn case study largely describes an operational application of the DST. It demonstrates how stakeholders can view a storm surge forecast and assess the likely outcome in terms of localised flooding (areas affected, timing, likely depth and duration of floodwaters). The tremendous advantage of this DST is that it presents both specialist and non-specialist users with a means for exploring the local impacts and detail of a predicted regional-scale phenomenon, and how these impacts are likely to evolve through the event. Even something as simple as detail on where and when flooding is likely to occur may significantly reduce losses and financial/well-being implications, such as when to move vehicles and where to move them to, advance warning on properties likely to be evacuated without requiring emergency intervention, and how long infrastructure or routes are likely to be inaccessible due to flood depth and duration. The local sailing club at Thornbury have now started to adapt to flooding events by constructing localised defences around the club house (Fig. 4a); the DST would indicate when and where these would require deployment if used on a temporary basis. The DST also allows the decision maker to apply “what if scenarios” to assess resilience for both operational and strategic purposes. For example, users have the ability to examine flood scenarios based on building-up the sea walls; such a proposal has been made by the Environment Agency to increase the height of the existing sea defences by 1.5 m along the coast from Oldbury-on-Severn to Sharpness by 2030. The slider facility in the DST is specifically designed to enable assessment of the relative significance of different drivers of coastal flooding and the consequences of their combined operation, i.e. non-linearity in the areas prone to flooding.
This DST has been designed to incorporate new requests from coastal decision makers, e.g. community datasets on other infrastructure, assets, evacuation routes etc., and for the flood scenarios to be updated as modelling advances and updated assessments of flood risk (climate-related projections, extreme level magnitude and frequency, probability, economic cost etc.) become available. Also, since it is based upon Open Source software it can be easily hosted and developed by other research groups without incurring licence costs.

Before making this open source DST publicly available, a series of trials for selected user groups will be conducted. It is intended to update the DST following user feedback to ensure the DST addresses key questions and concerns from across the coastal stakeholder community, and that it enables users to fully understand the capabilities and limitations of using the flooding scenarios. An ongoing iteration following feedback from the UK energy sector is to develop the DST to investigate flooding around the bases of electricity pylons. Most pylons would be able to cope with minor flood events, however more frequent flooding events and deeper flows, resulting in larger velocity speeds, have the potential to affect the foundations. Saturated sediments underneath tower bases could cause pylons to lean beyond their designed tolerances. Furthermore, faster flows could start to erode sediment surrounding the pylons and again cause leaning. This would require extracting flow rates as well as water depths from the LISFLOOD-FP model outputs, and using additional geological data.

6 Conclusions

An open source, web-based geospatial decision-support tool has been developed that allows the energy sector and the wider coastal stakeholder community to explore the likely flood impacts of future climate change scenarios. Two case studies describe how the DST can be used for strategic and/or operational requirements. The Fleetwood case study demonstrates the areas prone to flooding from sea-level rise, storm surges, high waves and high river flows, and combinations therefore, and how these are likely to
change in the future. This can be coupled with a land use and depth-damage methodology to highlight the financial consequences of climate change within a populous coastal community. The Oldbury-on-Severn case studies highlights the vulnerability of important electricity supply infrastructure and the surrounding low-lying rural area to coastal flooding, with an emphasis on short-term decision making immediately before and during a storm event. Here the emphasis is to minimize economic losses and limit threats to human health and well-being. The DST also offers to capability to undertake a “tipping point” analysis of coastal resources, aiming to identify significant shifts in areas prone to flooding when the present management policy option would be untenable.

The work illustrates the importance of an open source DST within which a range of users can explore the potential impacts of future climate change scenarios and drivers of coastal flooding according to their own interests and priorities without any institutional or licensing constraint. The key element here is to develop the DST as an experimental environment that can be updated according to information needs of coastal stakeholders and the availability of data. In the absence of a structured probability framework, the emphasis is on the user to take responsibility for their own assessment of likelihood from the range of available sea-level projections.

Further work would include re-computing the flooding scenarios for Oldbury-on-Severn using the recent localised sea defences which have been installed by the Thornbury sailing club. The current scenarios were run using LiDAR data collected before installation. In addition, an option for increasing the sea defences within the DST and viewing the resulting scenarios would provide some insight into proposed infrastructure developments.

Acknowledgements. The authors thank their colleagues at the National Oceanography Centre (NOC) and their Marine Data Products Team for providing tidal data, storm surge modelling forecasts and tidal prediction software, Magnox for providing additional sea defence data and tidal data, Environment Agency for providing LiDAR data and tidal data, Gloucester Harbour Trustees for providing tidal data, and National Grid and Electricity Northwest Limited for providing electricity infrastructure data. This work was supported by grants EP/1035390/1 (ARCoES) and an EPSRC Impact Acceleration Account administered through the University of Liverpool.
Application of flood risk modelling in a web-based geospatial decision support tool

P. J. Knight et al.

References

Application of flood risk modelling in a web-based geospatial decision support tool

P. J. Knight et al.

Application of flood risk modelling in a web-based geospatial decision support tool

P. J. Knight et al.

Abstract

Introduction

Conclusions

References

Tables

Figures

Application of flood risk modelling in a web-based geospatial decision support tool

P. J. Knight et al.

Table A1. Glossary.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootstrap</td>
<td>a sleek, intuitive, and powerful mobile first front-end framework for faster and easier web development</td>
</tr>
<tr>
<td>Leaflet</td>
<td>a modern open-source JavaScript library for mobile-friendly interactive maps</td>
</tr>
<tr>
<td>jQuery</td>
<td>a fast, small, and feature-rich JavaScript library which includes, e.g., slider bar development</td>
</tr>
<tr>
<td>Quantum GIS</td>
<td>a free and open source desktop geographic information system similar to ArcGIS</td>
</tr>
<tr>
<td>GDAL</td>
<td>Geospatial Data Abstraction Library is a library for reading and writing raster geospatial data formats</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>an object-relational database management system</td>
</tr>
<tr>
<td>PostGIS</td>
<td>provides spatial objects for the PostgreSQL database, allowing storage and query of information about location and mapping</td>
</tr>
<tr>
<td>OpenStreetMap</td>
<td>an openly licensed map of the world</td>
</tr>
<tr>
<td>PHP</td>
<td>is a server-side scripting language</td>
</tr>
<tr>
<td>GeoJSON</td>
<td>is a format for encoding a variety of geographic data structures</td>
</tr>
</tbody>
</table>
Figure 1. (a) UK map showing the locations of the two case studies: (A) Strategic case study centred upon Fleetwood, (B) Operational case study centred upon Oldbury-on-Severn. (b) Map showing location of strategic case study centred upon Fleetwood. (c) Map showing location of operational case study centred upon Oldbury-on-Severn.
Figure 2. (a) DST screen shot of the scenario with a 0.6 m sea level rise and a 1:250 year storm level (Extreme Water Level). (b) DST screen shot of the scenario with a 0.6 m sea level rise, a 1:250 year storm level (Extreme Water Level) and a 1:100 year wave height (Extreme Wave Height). (c) DST scenario with a 0.6 m sea level rise, a 1:250 year storm level (Extreme Water Level) and 1:50 year river flow (Extreme River Level). (d) DST scenario with a 0.6 m sea level rise, a 1:250 year storm level (Extreme Water Level), a 1:100 year wave height (Extreme Wave Height) and 1:50 year river flow (Extreme River Level).
Figure 3. (a) DST scenario with a 8.9 m storm level (Extreme Water Level) (surge forecast of the 3 January 2014 storm used as a guide). Sea defences (black dashed line), sub-stations (red boxes) and power routes (blue lines) are overlain. (b) DST “what if scenario” with a 9.5 m storm level (Extreme Water Level). Sea defences (black dashed line), sub-stations (red boxes), power routes (blue lines) and breach points (labelled “A” and “B”) are overlain.
Figure 4. (a) Thornbury Sailing Club: Localised club sea defences can be seen to the right of the track (Note: This area is situated between High Water and EA sea defences). (b) Thornbury Sailing Club: Adaption to flooding events (boats stored on stilts) (Note: This area is situated between High Water and EA sea defences). (c) Oldbury Pill flood gate: One of the lower points indicated by LiDAR. Debris can be seen in the foreground indicating the likely water level of the January 2014 event.
Figure 5. Maps of potential flooding due to a 1 in 5 year Extreme Water Level under 0.0–1.0 m sea-level rise in 10 cm increments (black areas indicate the flood water extent behind the sea defences). A “tipping point” in the area prone to flooding is seen at 0.50 m of sea-level rise, with substantial increases in areal extent thereafter.