Interactive comment on “Probability assessment on the recurring Meishan earthquake in central Taiwan with a new non-stationary analysis” by J. P. Wang and X. Yun

J. P. Wang and X. Yun
jpwang@ust.hk

Received and published: 10 July 2015

The comment was uploaded in the form of a supplement:

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., 2, 4831, 2014.

Fig. 1. Schematic diagram for the time-predictable model: a) best-estimate relationship between cumulative co-seismic slips and time, and b) the earthquake-time prediction facilitated with a failure state and a constant stress increment.
Fig. 2 Schematic diagram showing the essential of the Brownian model; within the two imaginary stress states, the model considers the stress-time series should be random and could be modeled by a long-term stress increment and a Brownian motion as

\[X(t) = \lambda t + \sigma W(t) \]

where \(X(t) \) is the stress at time \(t \), \(\lambda \) is the long-term stress increment rate, and \(\sigma \) is the magnitude of a Brownian motion \(W(t) \).

Fig. 3 Schematic diagram illustrating the negative binomial model; between the two stress states, many "stress routes" can be present, and the probability of each route can be estimated with the model, then developing the probability distribution for the interval between two consecutive events.
Fig. 4 Schematic diagram illustrating Mohr-Coulomb failure criterion; Circle A represents the initial state after a thrust-fault earthquake or at t_0, Circle B denotes stress states at t_* after t_0, and Circle C is the stress state corresponding to the failure state that causes rock failure and earthquake.

Shear stress
cohesion
friction angle
Circle A
A B C
Circle B
Circle C
Principle stress

Fig. 5 The Mohr circles for evaluating the non-stationary earthquake probability for strike-slip earthquakes.

Shear stress
cohesion
friction angle
A B C
Circle B
Circle C
Principle stress
The probability distribution within time t^* after t_0.

The probability distribution of the major principal stress at time t^* (i.e., $1_{t^* \sigma}$) after the last event or after t_0.

Fig. 6. The essentials of the new non-stationary model: Developing the probability distribution of the major principal stress at time t^* after t_0.

Fig. 7. The location of the Meishan fault in central Taiwan.
Fig. 8. The earthquake probability associated with the Meishan fault in three 10-year periods subject to the best-estimate return period of 162 ± 50 years (other input data are summarized in Table 1).

Fig. 9. The earthquake probability associated with the Meishan fault in three 10-year periods subject to the best-estimate return period of 162 ± 100 years (other input data are summarized in Table 1).
Fig. 10. A schematic graph explaining the average earthquake probability for the model application is decreased with a bigger range of return period, owing to the non-linear relationship between earthquake probability and return period.

Fig. 11. The Mohr circles for evaluating the non-stationary earthquake probability for normal-fault earthquakes.
Fig. 12 The Mohr circles for evaluating the non-stationary earthquake probability subject to an oblique tectonic compression.

Fig. 13. Schematic diagram illustrating the stationary process after combining many non-stationary processes; taking $T = t_0$ and $T = t_1$ for example, the sum of that many non-stationary probabilities will be close to each other, although the probability is very low for Fault D at $T = t_0$, and it is very low for Fault A at $T = t_1$.

Principle s