MODULATION INSTABILITY OF SOLUTIONS OF THE NONLINEAR
SCHRODINGER EQUATION
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Multiphase solutions that describe the modulation instability of
spatially periodic solutions of the nenlinear Schrddinger equation

are constructed.

1. Introduction

This paper continues the investigation begun in [1] of the modulation instability of
the solutions of the nonlinear Schrddinger equation (NSE)

Pt hat2| ) p=0. (1.1)

A detailed study was made in [1] of single- and two-phase modulation perturbations of the
simplest solution of Eq. (1.1) described by the formula

‘pzezﬁ'{—i«p. ( 1, 2)

The corresponding generalization to the arbitrary multiphase case was obtained in [2}. In
this paper we shall consider the modulation instability of the periodic solution of the
NSE that comes next in complexity after (1.2), namely,

H—kd ((x 2) 1+k 21/'12) {2, 1+ K
En YT /P T
where dn(z, k) is the Jacobi elliptic function, a delta amplitude. To find explicit
expressions describing multiphase modulation perturbation of the solution (1.3), we shall
use the method of [2], which is based on the direct degeneracy of general theta-functional
(finite-gap) solutions of the complexified equation (1.1). The final expressions obtained

in such an approach® are very convenient for subsequent qualitative and asymptotic
analysis.

Pz, )= t+icp}, (1.3)

2. Description of Modulation Instability of
the Solution (1.3)

In our constructions, we shall take as our point of departure the well-known (see
[4—6]) g-gap solutions of the system (complexified NSE)

st m—2v0t=0, —iv/+v—20u=0, (2.1)
described by the formulas
O (Vz+Witn—r)
O (Vz+Wi+n)
Yz+Witn+
b(z, )= —90 O Vet Witnt) exp{ —iEz—iLt}.
4 O (Va+Witn)

The parameters of the solution (2.2) are the algebraic curve I' (Riemann surface) of
genus g > 1 determined by the equation
28+2

p=p()=1 0-E), Eec, E+E, =k,

=1

u(z,t)=4

exp {iEz+ilLt},
(2.2)

*There is an alternative method of investigating the degeneracies of finite-gap solutions
(see, for example, [3]) based on the "degeneracy'" of the scheme of finite-gap integration
itself.
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with number A€C\{0} and vector n={n.}4Z} €C% The entities that occur in the expressions
(2.2) are the Riemann theta function ©(p) (p€Cf), the constant vectors V={V,,}f;f,,W={W\.}f;;,

r={r.,}f;z, and the constants w,, E, and L; they are uniquely determined by I (by the
numbers Ej) and a canonical basis, chosen arbitrarily on I, of oriented cycles a,..., e,

017
bo, ..., be—y with matrix of intersection indices ( 7 0) . Namely, we define on T the basis
of holomorphic differentials
CAAHC A% +CF p

v}\t= —
o) YP(n)

A, v=0,...,g—1,

normalized by the condition j ©,=04, and Abelian integrals Q, and @, fixed by the require-

ments
a) [do=0, j=2,3, u=0,....g~1;
ap

b) Q3 have singularities only at the points ot (these are the two points on T
corresponding to A~o, y~*+A**) and asymptotic behaviors

QA =F(2040(1)), A—roo* 93(?»)=1p}\,+0(1), A—roo™,
Q(A)=—In2+0(1), A—>oo—.
Then the constants w, and L are determined from the expansions
Qs(A)=—InA+In o, Fo(1), A=, QA)=F(2A+L/2+0(1)), A—>co¥,
the © function is constructed from the matrix
Bo=J 0, (Bu=Bu)
by

in accordance with the formula

-1 g1
0(p)= Z exp {ni (Bm, m) + 2ni (p, m)}, {(p,m)= Epvmv, (Bm, m)-—=2 B.mm.,,

'meZg ve=0 u,y=0

and the vectors V,W,r and the constant E are given by

28+2

cot g1
Vi=2iC,!, W,=—4i(C,\C/2+C2), €= 2 B, r={o, £2=c-2Y. | 10.

=1 v=0 ey

We consider the special case of g-gap solutions determined by the conditions
g=2N+1, N>1, E¢€R, 1=E<E;<...<Eg =1k, 0<k<i,
Eg+2="Eu Eg+3=—E27 sy Ezg+z=_Eg+1-

We choose the basis of cycles on T in the manner indicated in Fig. 1 (the continuous
straight lines are the cuts that connect the branch points E; to each other and to
infinity; 1in the representation of the cycles paths in the upper and lower sheets
correspond to the continuous and broken curves, respectively).

We subject the parameters E,, E;, ..., Eg to the limiting process Ey, Esp—a;, j=1,...,
N, 1<h<M<<...<Ay<<1/k. Then it is obvious that E,yisis, Eovisssi>Axy=—h; j=1,..., N, and the
function vYP(X) is transformed into

VP, (A) =V (W—1) (A*—1/k?) H (M2—22)

i=1

(we shall assume that V(A*—1) (3*—1/#*)>0 when A belongs to the upper edge of the cut from
1/k to = on the upper sheet). As a result, the curve I degenerates into the elliptic
curve T,, the Riemann surface of the function ¥(A*—1)(A*—1/k*). Proceeding as in {71, in
which complete degeneracy (to a curve of genus zero) was obtained, we can readily show
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that for the considered limit the infinite theta series in (2.2) are transformed into the
following finite sums of one-dimensional (elliptic) theta functions:

iz
8 (Vzt-Witn—er) >0, (z,t)= Z 0, (—— —;ﬁ + 1 +2 Toj (MM )+ —;—

Mmy=0,1
v>0

T)X
2

exp{zz Ti (mjm,—)-my_,_ijH) +2 Z’ENH,ZmNHmH-

>t it
2 E (—inz) (mitmy)—4 Z Vit (my—My5) +2 Z (niomi+n;+fmlv+i) —18 LTy’ (Mi—Mn ) },
i i i i

where

e

B:(plT)= Z exp{nim, t-+2nim,p}

is the third Jacobi theta function [8],
i’k
! i
S JEPHN S
o V(i*"?&z) (1 kzhz) . YO2-1) (1—-&%Y)
1/k
"M[}\A‘Bz A 1
=k * -——-———-————d;\w .7>lv % ='—*—YI1 Blz_“{ 7\«'\{
il ;_j: (7\,—7\,1)7(}\,2——1) (1—_]{:2}»2) § 2K i i 5K (Rt
' /R )
—h—~B;
THeg, 1= .[ A (Twai=Trs14),

k di
o (R) TP—T) (1=
dh
=V }»jz'—i 1/k2—}\1j2 5 Ij == o ———————— e —
=0 : -j: (A=2;) ¥ (1—2%) (1—FK"2*)

) 1/&

f —xA+B; B e b da
o Q)T /R 2K 5 V1) (I—Fh)

Thus, we have obtained a solution of the system (2.1) described exclusively in terms
of the theory of elliptic functions:

Oy (z,t) —2i L A=k 8 (1)
By @) ¢ D= G

This solution is parametrized by the N real numbers Aj, the (2N + 1) complex numbers

Mo, N My, and the complex number A, and it describes the interaction of 2N solitons of the
system {(2.1) on the background of its single-gap periodic solution. In particular,
therefore, the functions uy and vy are not almost periodic with respect to the variable x.
However, they do become such if the substitution x » ix is made. We show that, simultane-
ously, it is possible to arrange the parameters n,, ng, and A in such a way that

un (.t, t): A

uy(iz, t)=vy(iz, t), z, t€R, (2.3)
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i.e., the function Yy(x, t) = uy(ix, t) satisfies our NSE

P t2] P *p=0.

Noting that T and Tgj are purely imaginary and Ta, Ty % Yi» and r are real, we obtain

0. (iz, t) = 2 8 (ZkK + 1 Z‘ Toj(mj+mN+i)+‘2§—\ 21—) X

my=0,1
v>0

exp{ 2 ZT:'I (mmy i 1) +2 Z Tw g, i MM —

i>1 il
. — 0 .
2l Z%,-x (m,~+mN+,-) “"4 Z 'Y]t (mj‘_mN-].j) +2 Z (T]jomj"*""qN_,_ij‘_f_j) +18 Zr,-o(m,-—mNH) }_
i j i i
Making the substitution m;—1—mn—_;, Myy;—~1—m; and taking into account the eguation
T4l =TN4Lj

we can transform this expression for 8. to

8. (iz, t)=exp( Z ar Env‘”rz z w)

v>0 v>u>0

Z 0 ( 2kK+ n0+210,(m,+m1v+])+s/2 22 'l:ojlr/2)

my=0,1
v>0

exp {2 Z Tio (Mt My ) +2 Z Ty, M+

i>l il

_212 ;T (m,~+mu+j) -4 Z 'Y,t (m,~—~mN+j) +

i i

1 (m—my,;) — 2 Z} (M My Twvas;) —27 (m) } )

i i

where (again using (2.4))

1(m)= ZT:': (mytm My, ,)+ Z’ﬁm,z (mitmy,)=

i>1 it

Z, Z T (mytmy )+ Z(m,—l—m,”l) Z Tt

I=1 j=I+1 j=1+1

2 (mitmyy;) 2 TN4jl = 2 (mitmyy;) ZTJI+

i=2

Z (mjt+my.;) 2 T+ Z (mjtmyss) ZTMJ = Z(mﬁ’mnw)%

=341

—Z T+ Z T +Z TN+1,2+

=i+t

We impose on the parameters n and nJ the conditions

Im ne=i Zl Ty, Imn=Imnyy, Ren?+ Renny=—.

i
Then from (2.5) we have

8. (ir, t)=0_, (iz, t) exp ( Zx,x-i—z Z T2 Z Tv,.)

v>0 V>0
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or [
0, (iz,t)  O-,(iz,?)

8,(iz,t)  O,(iz, 1)
To satisfy Eq. (2.3), it is now sufficient to require |4|=yY1-F*/k.

We summarize. We have shown that for an arbitrary set of {M}, {#u}, {tui}, 7o, and ¢ such
that 1<Mh<h.<... <Mv<<1/k, zo, Tos, bo;, PER, 0<k<1, NéN, we can, using the formulas

8, (z,8) 2 ttig
Y (2, t)-— V1 '—@m )

r—Z
0.z, )= Y, @,( i Zn,-+2w(m,+mn+,-)+
i i

my=0,1
v>0

1—e
—2_" T/Z) exp{Z Z T (m,-m,+mN+,~mN+,) +2 Z,TNH,,mN_,_,-m, -+ 2i 2 o (z—xoj) (m;+mx+’)—
i>1 il

i

427,@-%, ) (=)= Zn<m,+mﬂ+,)+ze§lr,-°(mj—mn+,->}, e=1,0, (2.6)

)

obtain a solution of the NSE
PP

Remark 1. The parameters {z,}, {{o;}, %0 and ¢ are related to the original parameters
Nas Ny, and A by

(2.7)

To

DK =',—Ren, zy=—Im T],-o/m, Re n,"=2Yj0;—1i/2, p=-—arg 4.

The solution yy(x, t) is an almost-periodic function of the variable x with group of
real periods T,=2kK, T/=n/x; j=1,..., N. Note also that yn(x, t) is a smooth function of the
variables z, t6R. This property is due to the sign of the nonlinearity in Eq. (2.7).

Now suppose that
max ;<2 min y;=2¢, (2.8)
i i

and let us study the t - %« behavior of the solution Py(x, t) to accuracy O{e*"!),

If t > —», then the corresponding leading terms in the sums 0. correspond to vectors
m with coordinates

my=n,=... =m}\r=1, My 1=My 42> o0 o =va=0,
my=0, my=ms=...=my=1, My =M= ... =Myx=0,

mi=ms== ... =mN=mN+1=1, My 2= ... zTnzj\r=0,
mj=0, my==... =M ~=M 1= ... =mN=1, My~ ... =mw=0,

my=... -'=mN=mn+j=1, M= ... Myt =My j 1=
oo =m2N=O,
m_N:O, my=... =mN_1=0, Myes= ... =m2N=O,
my==. .. =my=M:x=1, Myo=...=Myy=0.

Therefore, in the limit t » —e« we obtain for o

0. (z,t)= exp{ 2i Z #; (2—2g;) —42, 15 (E—to;) ——Z Tt
Z, b2 Z ,,}{@3(;[:" 22 e )+
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N

I~ 1—e .
Z;[@(2kK°_Tw+—§~|ﬁ2%mp®r2mﬂx—mﬁ+

T—x 1—s
473 (t——toj)—ier,-"}-l- @3( 2]{:KO -+ Toj + — 2 | 1/2)

exp {0;+2in; (z—xy;) +4y; (t—1y;) —ier;’} ]-l— 0 (e*) }, 8= Z Twail — Z Ty — Z, . (2.9)

le=jtd

Similar calculations for the case t > +» lead to expressions that differ from (2.9) by
replacement of Yj by ~Yj and r$ by -—rg. Hence, recalling the definition of the elliptic
function dn [8], we can write d%wn the following asymptotic representation for the
solution yy(x, t) in the limit t > koo

14k 1+k 2 ]/k 2i 1+k t-+ipk
v (@1 =——dn <<””‘"‘”°)_k_ 1+k) X
N . .
{1 + Ze$4vj(t~t0j) [aljie—zmj(x—xn) + azjiem"i(x‘xﬂi)] +0 (e-sv,,ltl)} , (2.10)
=t

where

z
=@ F erio7 aeiiEaaji('E‘) =
j

—%o T2,
eOmlrz) e (e vz
@3( ShK (—1) g5l /2 _ 09, ik +(—1) 1o 7/2
e . e*Firf— , e=12
—Zo T—2, )
@3(2kK 1:/2) @o( 2EK-|T/2

Thus, the constructed solution Yy describes an exponentially small (in the limit |[t] - =)
multiphase modulation of the simplest x~periodic solution of the NSE. It is interesting
that the corresponding modulation instability reduces merely to a finite change of the

time phase g: .
Ap=gt—g=—2 )1y,
j

The phase x, of the spatial variable is unchanged.

Remark 2. The leading term, of order 0(1), in the asymptotic expression (2.10) is
also valid when the condition (2.8) is lifted.

Remark 3. For the modulus of the solution yp(x, t) there exists an alternative to the
representation given by (2.6):

1
2 AZ dp 1+k2
bow (2, 2) |2 = (x n+e, c=—-=2 4 .
K VD) (1-F28 &
Remark 4. By means of the variable
u—-j , A=sn(u,k),

V(l—?\,z) (1 EEAF)
which uniformizes the curve T',, we can go over in the solution yy(x, t) from the parametri-
zation by the numbers {Aj} to parametrization by the numbers {uj}:
O<u,<u,<...<uy<K’', h=sn(iu;+K, k).

The expressions for Tu, Ty Tyiin 7 Vi, and x; in terms of the new parameters {uj} are:

i
. @1 (—(u,‘i‘ul) |T/2)
Toy=1/2— (i/2K) u;, Ty = 2122_ + —2% () — In —— 2K

- e

0, (Zt—iK—(u,-—-u,) IT/Z)
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0, (——IL—— (u;+u,) |17/2)

mit | @ 4K
T S N ’
| @z(z’k— (u,-——lZz) ET/Z)
. —isn(iu;, k) 12 .==__1—k2‘snauhk)
T A e G B) (mod 2m), v, kAt (i, k)
1k sn (iuy, k)

i
— (K, in+E+iK'),
b oG By an G By KR R D)

where T(K, a) is the complete elliptic integral of the third kind [8]:

;= —

snacnadnasn’u

kZ
Ti(z,a)=| du—
¢

1—%*sn*asn’n

o (u—a
N1
2K d ( u l )
+uZ Z(u)=— —\ 1}
uZ(a), (u) dulneg 5K Tf.

1

o |I*

Remark 5. In the phase space,* the image of the solution yy(x, t) is a heteroclinic
trajectory doubly asymptotic to two cycles — the images of the solutions P(x, t)} (1.3)
differing by the phase shift A¢. By the methods of this paper one can also obtain more
complicated solutions that are doubly asymptotic to a torus, i.e., to a solution of the
NSE that is an almost-periodic function of the variable x with two real periods. For
this, it is necessary to construct in the general finite-gap expressions (2.2) a limit
analogous to the one considered in this paper but corresponding to degeneracy of the
curves I’y not to the elliptic curve 'y, but to the hyperelliptic curve of genus 3 des-
cribed by the equation

yP=(A"— (o) AP+H1) (M= (pP+Hp5)A%+1). (2.11)

As is shown in [11], the finite-gap solution of the NSE constructed from this curve
can be expressed in terms of one-dimensional Jacobi theta functions and a function almost
periodic with respect to x with two real periods. We intend to discuss the details of
the corresponding limiting process and the expressions that describe the medulation
instability of the solution corresponding to the curve (2.11) in a following publication.
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