Interactive comment on “Evaluating snow weak-layer rupture parameters through inverse Finite Element modeling of shaking-platform experiments” by E. A. Podolskiy et al.

E. A. Podolskiy et al.
evgeniy.podolskiy@gmail.com

Received and published: 5 December 2014

First of all, we are grateful to the Reviewers for criticisms and comments. We have taken advantage of this opportunity to revise the paper by addressing or answering the provided remarks as explained in our detailed responses. EAP also thanks his family for providing him with conditions and financial support necessary for working on this revision.

We substantially amended the paper to account for reviewers’ criticisms. During the two stages of the review we attempted to follow comments by the three referees and
the editor. At the initial stage, the major point (accompanied by several pages of minor
remarks) by the two referees and the editor was to reduce the size of the paper and
to remove repeating statements for improving the readability of the text. We carefully
followed this suggestion and reduced the main text at least by 3 pages. Following this
initial revision, the Referee #2 has not provided any additional criticisms, the Referee
#3 pointed multiple technical corrections and the Editor wrote that ‘the paper reads
well’.

Together with the present corrections suggested mainly by the Referee #1, modification
of 6 figures, clarifications, and substantial shortening of text (by another 5 pages with
one figure completely removed), we hope the paper was improved compared to the
version submitted 7 months ago.

Attached documents (please, refer to the Supplement): - Referees’ comments and
authors’ replies - highlighted changes in the manuscript - revised paper (and all its
figures as separate files)

On behalf of all authors, Evgeny A. Podolskiy

5 December 2014

Please also note the supplement to this comment:
http://www.nat-hazards-earth-syst-sci-discuss.net/2/C2686/2014/nhessd-2-C2686-
2014-supplement.zip

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., 2, 4525, 2014.