APPLICATION OF A HYBRID APPROACH IN NONSTATIONARY FLOOD FREQUENCY ANALYSIS – A POLISH PERSPECTIVE

Krzysztof Kochanek¹, Witold G. Strupczewski¹, Ewa Bogdanowicz²,
Wojciech Feluch³ & Iwona Markiewicz¹

(1) Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw,
kochanek@igf.edu.pl, wgs@igf.edu.pl, iwonamar@igf.edu.pl
(2) Institute of Meteorology and Water Management, Podleśna 61, 01-673 Warsaw,
Ewa.Bogdanowicz@imgw.pl
(3) Warsaw University of Technology, Łukasiewicza 17, 09-400 Płock, wfeluch@gmail.com

ABSTRACT

The changes in rivers’ flow regime resulted in the surge in the methods of non-stationary flood frequency analysis (NFFA). The maximum likelihood method, used in most flood frequency analysis (FFA) applications for Polish rivers, can be applied in non-stationary case to joint estimation of parameters of trends in moments and probability distribution. However this method is known to produce big systematic errors in moments and quantiles resulting mainly from the assumption of a false model (model error) unless this model is the normal distribution.

The estimators by the method of linear moments (L-moments), rarely used in Polish applied hydrology, yield much lower model errors than those by the maximum likelihood.

To improve the accuracy of the parameters and quantiles in non-stationary case, a new two-stage methodology of NFFA based on the concept of L-moments was developed. These two stages consists in (1) weighted least square simultaneous estimation of trends in mean value and in standard deviation, ‘de-trendisation’ of the time series and (2) estimation of parameters and quantiles by means of stationary sample with L-moments method and ‘re-trendisation’ of quantiles. Despite taking advantage of the positive characteristics of L-moments, a new technique also allows to keep the calculations ‘distribution independent’ as long as possible (alternatively a non-parametric estimation of probability density function can be used in the second stage). As a result time-dependent quantiles for a given time and return period can be calculated. As the important feature of annual runoff regime in Poland is the occurrence of both snowmelt and rainfall floods the seasonal approach was also examined.

The comparative results of Monte Carlo simulations confirmed the superiority of two-stage NFFA methodology over the joint trend and probability density function estimation by means of maximum likelihood. Further analysis of trends in GEV-parent-distributed generic time series by means of both NFFA methods revealed big differences between classical and two-stage estimators of trends got for the same Polish datasets.

The comparisons prove that choice and use of non-stationary methods should be carried with care. The use of traditional stationary methods can lead to dangerous results, especially in case of increasing trends in upper quantiles. The results of non-stationary analysis should be treated as sort of benchmark for decision makers showing the possible future behaviour of design values if trends continue.
1 Introduction

Scientists are still debating whether the observed climate changes are temporary and caused by human activity, but do not question the changes themselves. The variability of natural phenomena is permanent feature of nature which was noted already by ancient philosopher Heraclitus of Ephesus (c. 535 – c. 475 BCE), the author of the famous citation: Panta Rhei, which modern man long seemed to ignore. Quite recently most of the tools and techniques used in flood frequency analysis assumed stationarity of hydrological processes in rivers (e.g. Milly et al., 2008). Nowadays, it is understood and accepted, that due to the observed change in climatic parameters and rapid development of calculation techniques the incorporation of the ‘non-stationarity’ factor in hydrological parametric and non-parametric modelling is necessary and yet has become technically possible. Thus, hydrologists face the challenge of developing new or improving existing methods of flood frequency analysis (FFA) by taking into account the non-stationarity of extreme hydrological events. One has to bear in mind, however, that the variety of hydrological parameters that change in time and thus can (and should) be analysed within the context of time-variability is vast. These are for instance maximum annual or seasonal maxima ($Q_{T \max}$), number of floods per year (N_Q), volume of maximal food ($V_{Q_{\max}}$), or quite interesting centre of mass of seasonal discharge (which for a period T_1-T_2 can be defined as: $\int_{t_1}^{t_2} Q \cdot dT / \int_{t_1}^{t_2} Q \cdot dT$); each of these parameters require tailored approach. The recent research on non-stationarity in hydrology can be generally divided (subjectively) into two threads: (i) non-parametric trend(s) analysis in hydrologic data, moments and linear moments (aka L-moments) by means of statistical tests, e.g. Zhang et al. (2001), Vinnikov & Robock (2002), Burn & Hag Elnur (2002) and (ii) assumption of the parent distribution (both in local or regional scale) and detecting trends in its parameters (e.g. Khaliq et al., 2006, Renard et al., 2006, El Adlouni et al. 2007, Villarini et al., 2009). The latter approach consists in treatment of time parameter as the covariate and estimation of time-dependent flood quantiles by any method of parameters estimation. Frequently cited Davison and Smith’s publication (1990) is of highest recognition and, in our opinion, particularly Section 3.1 of Chapter 3 – Maximum Likelihood Regression with the Appendix A, where, perhaps for the first time in hydrology, maximum likelihood (ML) estimation of distribution parameters with covariates was presented. The great variety of flood frequency distribution functions with the presence of time covariate can be estimated e.g. by the free-of-charge Generalized Additive Models for Location, Scale and Shape (GAMLSS) software (Rigby & Stasinopoulos, 2005).

In this article we will attempt to join these two complementary threads (i and ii) and confront the classical theoretically sound method of non-stationary quantiles estimation based on maximum likelihood (ML) with covariates with a simple but reliable hybrid, two-stage (TS) method based on Weighted Least Square (WLS) and L-moments. The one of the main aims of the article is to satisfy the needs of Polish hydrological service for a simple and reliable tool for non-stationary flood frequency analysis (NFFA) for the datasets exhibiting non-stationary properties. In fact the L-moments technique, despite its spectacular career in the hydrological sciences, is still barely used by Polish practitioners.

The tangible results of the research are two variants of software for calculations of non-stationary flood quantiles based on TS method: for seasonal and annual maxima datasets. The software based on ML classical approach considers only annual maxima datasets.

2 The Two-Stage (TS) Method

Our earlier works on issues of flood quantile estimation in non-stationary conditions and deficiencies of classical approach to non-stationary flood frequency analysis (NFFA) based on maximum likelihood method (ML) (Strupczewski et al., 2001; Strupczewski & Kaczmarek, 2006) were undertaken in order to identify the non-stationary properties of the occurring hydrological processes and to develop a simple, reliable and particularly easy to use tool for forecasters.
2001) resulted in preliminary ideas of algorithms using up-and-coming method based on the concept of L-moments (LM). This method, paradoxically, requires stationary series of independently and identically distributed components (i.i.d.). Being a modification of the method of weighted probability moments (PWM) (Greenwood, et al., 1979; Hosking, et al., 1985; Rao & Hamed, 2000) the L-moments method (Hosking, 1990; Hosking & Wallis, 1997) is widely used in the FFA because of its simplicity and satisfactory results for short sequences of hydrological measurements. Hosking et al. (1985) showed that for small samples the PWM estimators give better estimators of quantiles of the high probability of non-exceedance (called ‘flood quantiles’) than other popular methods of estimation (such as moments, maximum likelihood, etc.). Moreover, the flood quantile estimates obtained by means of the L-moments are less sensitive to the (erratic) selection of the model (the probability distribution function) than the estimated by the maximum likelihood method (e.g. Strupczewski et al., 2002a, b). Besides, as far as our experience is concerned (Strupczewski et al., 2005; Kochanek et al., 2005) the numerical methods applied to determine the maximum of the likelihood function of multi-parameter distributions often encounter the local maxima resulting in termination of the optimisation algorithm, thus the estimates of the parameters (and quantile) are far from being optimal. The difficulty to find the global maximum of the likelihood function increases with the number of model parameters, e.g. when the time as covariant is incorporated in stationary models, while the method of the L-moments is ‘indifferent’ to the type and number of parameters of the probability distribution functions. In addition to the advantages already mentioned, the L-moments (Hosking, 1990, Hosking & Wallis, 1997):

- can be used for more kinds of models than the conventional moments, including models whose finite conventional moments may not exist (these models are called limited-existence-moments distributions); if the mean exists, the higher L-moments also exist,
- are less biased than the conventional moments,
- are resistant to the outliers,
- are easy to calculate for the distributions having an explicit analytical form of quantile as a function of the cumulative distribution function, i.e.: \(x = x(F) \).

However, the LM method requires data series to be sorted from the smallest to the largest, which results in the devastation of the chronology of the subsequent flood episodes occurrence. For stationary cases the order of the elements in the sample is not important, but when we consider the non-stationary series, the sequence of the measurements is crucial. Therefore, the process of the estimation of non-stationary flood quantiles was divided into two steps:

1. in the first stage of the trends in the mean and standard deviation of the annual or seasonal maximum flows are estimated using the weighted least squares method (WLS) (Strupczewski and Kaczmarek, 2001) which is the equivalent to the simultaneous estimation of trends in the moments of the normal distribution and is applicable for low- or moderate-skewness distribution functions that are unbounded or are characterised by a lower bound in the form of the location parameter. The calculated trend values are then used to standardise (deprive of trends) the time series;

2. the resulting stationary sample is then used to estimate parameters and quantiles (stationary!) of a selected distribution function whose skewness is time-invariable. Alternatively a non-parametric method can be used to estimate probability density function (PDF). Afterwards, the so calculated quantiles are re-trended.

The idea to introduce trends in the moments, rather than in parameters, nears the two-stage method to the classic analysis of time series and the techniques of trends detection. It also makes the results comparable, because the conventional moments (unlike the parameters) are distribution-independent summary statistics and provide possibility to apply the same trend models for the entire data set. What is more important, it diminishes the estimation errors in moments, especially when the skewness coefficient (CS) of the dataset is small (close to 0).
These errors are particularly large for the method of maximum likelihood when the selected distribution function (model) is incorrect (i.e. does not fully represent the population it describes) or when the population model is different from Normal for which the asymptotic estimation errors of moments are equal to 0. Similarly, the asymptotic estimation error for the mean value is 0 for Gamma and Inverse Gaussian distributions. It is worth mentioning that the estimation errors of moments in both the TS and ML grow with the CS. Note that the TS method assumes that the statistical model (distribution type) does not vary in time, in other words once assumed distribution function (e.g. GEV or Gumbel) does not change over time and only its parameters (moments) are time-dependent. This is so, because the introduction of the time-variability in the model type would drastically complicate an already complex algorithms for estimating time-variant flood quantiles with scarce data. Bearing in mind the usual shortness of time series and the policy of parsimony in number of estimated parameters, we decided to adopt the simplest, i.e. linear, trends in the mean and standard deviation (remembering that other forms of time functions, like exponential, logarithmic, trigonometric, parabolic, etc., may be used):

$$\mu = a \cdot t + b \quad \text{and} \quad \sigma = c \cdot t + d \quad \text{(1a, b)}$$

where:

- t – time (in the years following the beginning of the time series)
- μ – the average in year t
- a – parameter of the trend in the mean – parameter of ‘slope’
- b – the parameter of mean – parameter of ‘intercept’
- σ – standard deviation in year t
- c – parameter trend in the standard deviation – parameter of ‘slope’
- d – the standard deviation parameter – parameter of ‘intercept’.

As one can see, instead of two parameters in stationary case (μ, σ) now there are four parameters to be simultaneously estimated in non-stationary case (a, b, c, d).

The parameters a, b, c, d are used for the standardisation of the time series x_t of annual or seasonal maximum flows (we prepared two variants of the calculation software packages: for annual and seasonal maxima). As a result a sample, y_t, free of trends in the mean and standard deviation is obtained:

$$y_t = (x_t - a \cdot t - b)/(c \cdot t + d) \quad \text{(2)}$$

The individual elements y_t of a random sample can be sorted to form increasing series suitable to calculate the L-moments for estimation of the parameters and quantiles (stationary!).

In the second step, firstly the model parameters are calculated with the use of the method of L-moments and then quantiles ($X_{y,M}$) for the given probability of non-exceedance (F) for the selected probability distribution function (M). Of course, in the second stage, the method of L-moments can be replaced by any parametric or non-parametric method of estimation. The use of a non-parametric method, e.g. kernel probability density estimation (e.g. Rosenblatt, 1956; Feluch, 1994), as the TS second step would definitely detach the trends estimation from any distribution function, which would result in ‘purely’ data-driven technique. Nevertheless, in this paper due to its advantages stated above, the L-moment method is used as the second stage of the TS approach. In both versions of the TS software package (for the seasonal and annual maxima) 7 functions were implemented: two-parameter distributions: Normal (N2) and Gumbel (Gu2), and three-parameter ones: Log-Normal (LN3), Pearson type III (Pe3), Generalised Extreme Value (GEV), Generalized Log-Logistic (GLL) and Weibull (WE3). The algebraic forms of these functions and formulas of parameters estimation by the method of L-moments can be found, for instance, in Rao & Hamed (2000). Since the elements of y_t can be,
and usually are, both positive and negative, the distributions have to be characterised by
unlimited range or by the lower bound in the form of the location parameter. Obviously, the list
of models available in the packages does not exhaust the variety of possibilities but can be
easily completed by new distribution functions. The selection of the best model for the
particular series can be made by comparing AIC values (Akaike, 1974; Hurvich & Chih-Ling,
1989). In case of seasonal approach to estimation of the annual peak flows distribution, the
seasonal distributions may differ from each other in respect to the distribution function and its
parameter values. The quantile, X(F), is calculated numerically for the model being the
alternative of the two seasonal distribution functions, F1 and F2: F(X, t) = F1(X, t) F2(X, t). More
on the seasonal approach to modelling of annual peak flows one can find in Strupczewski et al.
(2012) and Kochanek et al. (2012).

Having the stationary quantiles \(X^s_i(F)\) and the values of parameters and trends in the mean
and standard deviation estimated in the first stage of the procedure \((a, b, c, d)\) the time-
dependent quantiles \(X^M_i(F, t)\) can be calculated for selected moments of time \((t)\):

\[
X^M_i(F, t) = (a \cdot t + b) + (c \cdot t + d) \cdot X^s_i(F)
\]

As a result of the two-stage algorithm, one obtains the quantile values for the given
probability of non-exceedance and a given year. The similar results, but calculated only for the
series of annual maxima, are obtained when using the classical approach based on the maximum
likelihood functions with covariates (time). Here, to allow the comparison with the TS, the
location and scale parameters are expressed in terms of time-dependent mean and standard
deviation. The shape parameter is assumed to be time independent. Please note, that the number
of estimated parameters in the ML approach increases by two (when the linear model of trends
in mean and standard deviation is applied) in relation to the stationary case. This method is well
known and described in the hydrological literature (e.g. Strupczewski, et al., 2001; Katz, et al.,
2002), and its detailed description is omitted in this article.

3 The comparison of the ML and TS approach – a numerical experiment

In order to compare the results of both methods of estimating time-dependent quantiles the
numerical simulations based on Monte Carlo (MC) technique were carried out. A series of non-
stationary pseudo-random series of the assumed trends in the mean and standard deviation were
generated and then used to estimate trends in mean and standard deviation as well as calculate
quantiles of the given probability of non-exceedance \((F)\) in a year \((t)\). The time dependent mean
and standard deviation as well as the skewness coefficient \((CS)\) in the generated time series
reflect the maximum flow regime of Polish rivers. Knowing the population values of (time
dependent) parameters of the distribution, one can calculate the errors generated by both
methods of estimation.

The selection of models for the observed series (in case of the TS approach – a fixed sample)
were based on the AIC values which means that in the subsequent MC simulations in general
the quantiles, but in the ML approach also trends in mean and standard deviation, can be
determined for different models. For both variants of the experiment (TS and ML) three cases
of model’s selection were considered: (i) if the true probability distribution function of the series
is unknown, and therefore every distribution (from a set of available in the software) has an
equal chance to be indicated as appropriate for the de-trended sample (TS) or the time series
(ML), (ii) if we use the wrong distribution (the case reflecting the most ‘natural’ situation), i.e.
the true (generator) model is eliminated from the competition with the alternative models, and
(iii) if we use only true model consistent with the generator. Calculations were performed for
different variants of the generator, the mean and standard deviation, trends, skewness and
sample size, probability of non-exceedance \(F \) and time horizons \((t) \) of the quantile. However, for brevity only the most informative results will be presented in this article; the conclusions, if possible, will be generalised to the other cases.

The results of the estimation of trends for the generator of the GEV distribution with parameters mean, \(\mu_t = 1000 + 2 \cdot t \), standard deviation \(\sigma_t = 500 + 2 \cdot t \) and \(CS = 1.5 \) for the series of length \(N = 30…200 \) are shown in the Figure 1. It is worth noting that the generated series rarely were ‘recognized’ by the software as the GEV population, especially if they were short. This is because the relatively short time series do not reflect all the characteristics of the population. Additionally, in case of the TS method the structure of series was further disturbed by standardisation, so distribution function was adjusted to the samples without trends.

Therefore, the results of the ML estimation for all available distributions (option (i)) barely differ from those got for the set of distributions without the GEV (option (ii)), the small percentage of cases when the GEV was recognised pose no significant effect on the mean scores and, therefore, the presentation of graphs for the variant (ii) is pointless. Of course, as far as the TS is concerned, the trend estimated by means of the WLS is the same for all three variants, since it does not depend on the model which is selected in the second stage of the algorithm.

The graphs show that both methods lead to a relatively good estimation of the mean and its trend with a slight predominance of the ML method. This method in variant (i) gives good approximation of the trend in small samples \((N < 80) \), whereas, in variant (iii) the results are comparable to the WLS. As far as the trend of the standard deviation coefficient \((c) \) is concerned, better results in terms of stability are achieved by the WLS. If, however, the general estimation of time-dependent mean, \(\mu_t \), and standard deviation, \(\sigma_t \), are taken into account, the WLS is unbeatable. The shape of the ML curves reveal the unstable character of the solution which (even for very large samples \(N > 1000 \) unreal in hydrology) do not reach the true value of the population, while the parameters by the WLS tend to the correct solution. In addition, the ML method is relatively erratic – a few percent of the estimation attempts fails for unknown reasons and/or the results are unreliable because we cannot be sure whether the algorithm reached global maximum of the likelihood function. In a situation where the population parameters are known, each incorrect results can be identified and verified; in the analysis of real hydrological data it is impossible, so the analyst should be aware of the theoretical properties of different methods of estimation and approach to the obtained results with the reserve. What is more, even though the global maximum were reached, different sets of ‘optimal’ parameters (including trends) estimated by means of the ML may result in similar values of AIC, regardless of the fitted distribution function. This may lead to the paradox, where for different assumed distribution functions but for the same time series one obtains various values of trends that can differ even in their directions. This practically eliminates the ML approach form the regional analysis where the regional trends should at least be of the same sign. These problems do not concern the WLS method, which always gives the reliable results and the trends do not depend on the assumed distribution function.

Considerably stronger differences in the results obtained by two competing methods, TS and ML, can be observed for flood quantiles. As an example, the discussion of the selected quantile probability of non-exceedance \(F = 0.9 \) which corresponds to the maximum flow of a 10-year return period. The criterion of estimation errors were the relative bias (RB):

\[
RB = \left(\frac{X_{F,est.}^t - X_{F,teor.}^t}{X_{F,teor.}^t} \right) \cdot 100\%
\]

where:

\(X_{F,est.}^t \) – the value of estimated quantile in \(t \)-th moment in time (year),

\(X_{F,teor.}^t \) – the value of theoretical quantile in \(t \)-th moment in time (year),
and the relative root mean square error, (RRMSE):

$$\text{RRMSE} = \left\{ E\left[(X_{F \text{ est.}}^t - X_{F \text{ teor.}}^t)^2 \right] \right\}^{0.5}/X_{F \text{ teor.}}^t \cdot 100\%,$$

(5)

The results for the variant (i) and (iii) for selected moments of time is shown in Figure 2. Option (ii) is omitted because of the substantial similarity to (i).

For brevity, as examples we present in the diagrams two moments in time (i) related to the series size \((N)\), namely \(t = N/2\) and \(t = N\). These moments in time are particularly interesting when analysing the parameters of the hydrologic structures within the context of time. It is easy to notice, that for the option (i) the bias of the quantile obtained by the TS method is lower (in fact close to 0) than the one for the ML method regardless the time \(t\). This is primarily because the ML method is more sensitive to a model error, and models identified as the best for the generated series are usually different from the population of the pseudo-random generator. A clear advantage of the method TS over the ML disappears only when quantile estimation is done using the same model as the generator model — option (iii). It should be noted, however, that such a situation does not happen in practice, because even though the real ‘true’ model of annual maximum flows was known, it would be too complex so its parameters could be estimated from the short series of measurements usually available in hydrology.

The values of the quantile’s relative root mean square error (RRMSE) for the two methods are comparable but the ML method seems to be slightly superior. However, a little better results of the RRMSE for the ML do not compensate much higher values of bias.

To sum up the numerical experiment, we can conclude that although the trend estimation results using both methods are similar, the TS method proved better when calculating the time-variant flood quantiles in terms of the relative bias of upper quantiles (the root mean square error is technically indifferent). Therefore, when we do not know the model and the parameters of the populations of the time series, it is safer to use the TS approach. In addition to the better estimation of the quantile, it is also more stable in terms of numerical methods and easier to implement in a practical calculation soft-package.

4 Estimation of Trends and Flood Quantiles for Polish rivers.

Software based on the ML and TS methods (for the latter variants for annual and seasonal maxima) was used to estimate trends and flood quantiles for 55-element time series of maximum annual (seasonal) flow measurement (years 1951-2005) for 31 gauging stations located on the largest Polish river: Vistula and its tributaries that represent the whole variety of the catchment sizes and regimes available in Poland.

The sequences of the historical annual and seasonal maxima do not reveal statistically significant ‘shifts’ in annual/seasonal peak flows due to a sudden change in the hydrological regime of the rivers, for example, because of the construction of reservoirs upstream, water transfers and intake, etc. Such datasets can be then treated as the subject of further trend analysis. Thus, using the three methods implemented in soft-package: (1) the two stage method for a series of annual maxima, (2) the two stage method for seasonal peak flows and (3) method of maximum likelihood for annual maxima the trends in the mean and standard deviation were calculated, as well as, the upper quantiles for the selected time moments, i.e. the first year of the time series \((t = 1)\), the middle of the series \((t = 25)\), the end of the observation period \((t = 55)\) and 10 years after the last element of the series \((t = 65)\). For brevity two distributions, namely Gumbel and GEV, were employed in the calculations.

The vast amount of measuring material and the results of the estimation made it impossible to present all the findings in the limited context of this article. Without loss of the generality
the detailed analysis of the results is limited to the 10-year quantile calculated by means of
annual peak flows. In order to compare the TS (WLS in terms of trends in mean value and
standard deviation) and ML methods the results are presented as the ratio of a value obtained
by the TS (WLS part) and ML approach (Tables 1 and 2); the absolute numbers are discussed
only for one station – Warsaw-Nadwilanówka on the Vistula River (see Fig. 3).

Since the estimation results of the trends moments by means of WLS do not depend on the
model (because it is always normal distribution function), the numbers in the table above
support the belief that the values of trends and moments for the ML are strongly distribution
dependent. It is, undoubtedly, the weakness of this approach, because the model (distribution
function) is usually fitted to the sample by means of more or less subjective methods, whereas
the true form of the model remains unknown. Interesting is, that the differences between the
results are not limited only to the absolute values of the estimators but also to their signs! This
means that, for example, for the Żywiec gauge (number 12) the GEV gives a negative trend in
mean \(a = -0.04 \) and the Gumbel’s trend is positive \(a = 0.17 \). Such a qualitative variability of
the estimators undermines the credibility of the results of non-stationary flood frequency design
and increases the margin of error resulting from the uncertainty of the estimators. In addition,
there is no guarantee that the calculated trend will continue in the future, especially if its sign
is negative which is rare in Poland. According to the expectations, the Gumbel model gives
ML-based trend estimators nearer to the WLS method than the GEV distribution, since the
skewness of the Gumbel distribution is constant \(CS = 1.14 \) and just slightly higher than the
Normal distribution \(CS = 0 \).

Table 2 shows that, although the results of the trend estimator may vary, quantile values
obtained by both methods are generally very similar (differences rarely exceed a few percent).
The procedure ML/GEV gives usually larger quantiles than TS/GEV one, while for ML/Gumbel
they are generally smaller. Obviously, the differences grow with the probability of exceedance
of a quantile and ‘distance’ from the centre of the time series \(t \approx 25 \) revealing the greatest
value for the quantile extrapolated beyond the time of the time series. The time-dependent
quantiles equal to stationary quantiles near the centre of the time series, and the difference
increases when moving away from the centre. This is so, because the trend detected in the
standard deviation (i.e. parameter \(c \)) is relatively small in comparison to ‘stationary’ part of the
standard deviation (parameter \(d \)). These results prove that the use of traditional stationary flood
quantile estimation methods for the cases where the variation of hydrological regime of rivers
is observable in the measurement datasets is a far-reaching simplification and leads to erroneous
results and decisions. The difference of stationary and non-stationary quantiles in future years
shows that, if the trends continue, one can expect the important changes in design values. So,
when the process is known (believed) as non-stationary, also non-stationary methods should be
used for its analysis. On the other hand, the capability of modelling the non-stationary complex
hydrological phenomena is still very poor. One has to admit that it is difficult to identify a
combination of method/model that gives results close to reality. However, basing on the
experience drawn from the numerical experiment you can incline toward the results obtained
by the TS, while the choice of the model depends on the characteristics of the time series and
the preferences of the analyst.

Results for gauge Nadwilanówka Warsaw on the Vistula by different methods are presented
in Table 3. According to the maximum likelihood criterion the best-fitting distribution to the
sequences of annual maxima and summer maxima on the Vistula River in Warsaw is three
three-parameter Pearson Type III distribution, and for the winter maxima the Weibull
distribution (Kochanek et al., 2012). For these models, the calculations were carried out.

Strikingly large differences in the estimated values of the moments (and trends) between the
ML and TS are transformed into differences in flood quantiles. As mentioned above, differences
in the trends consider not only the absolute value but also the sign of the mean trend (in case of
summer) and standard deviation (in case of year). It means that by careful adjustment of the estimation methodology, one can get the ‘desired’ results. The quantiles by the ML are much smaller than those obtained by the TS, the difference increases with the return period of a quantile. Interesting is, that in both methods nearly always the quantile values decrease with time, even if the trend of the mean is positive (like in TS/summer) but too small \((a=0.56)\) to compensate large negative trend of the standard deviation \((c=-10.8)\). The exception is TS/winter \(X_F^t=0.9\) and \(X_F^t=0.99\), where the high value of the negative trend in the mean and equal to this (in its absolute value) trend of standard deviation \((a/c \approx -1)\) result in a slight increase in value of flood quantile over the years. Similarly, in the case of the TS/year, the ratio \(a/c \approx -1\) results in little variation of the quantile values, in particular the \(X_F^t=0.9\) slightly decrease, whereas \(X_F^t=0.99\) slightly increase over the years. It is also interesting that the annual quantiles received by the method of TS for alternative events (the last row of Table 3) is very similar to the quantiles for the summer season. This reflects the dominant role of the summer maxima over winter ones; this issue is discussed in detail in Strupczewski et al. (2012). As in the case of GEV and Gumbel distributions it is impossible to indicate clearly the proper results and thus the estimation method that best predicts the quantiles. However, accepting the uncertainty of the estimated quantiles, it is possible to draw the conclusions about the direction of changes in the river regime in next years and prepare a water management policy assuming the possible reduction in the annual and seasonal maximum flows.

5 SUMMARY AND CONCLUSIONS

The purpose of this study was to present a simple but reliable two-stage method (TS) of flood quantile estimation from non-stationary time measurement series and to confront its accuracy in the results of trends in the mean, standard deviation and time-dependent quantiles with the classical method based on the maximum likelihood (ML) function with covariates (time). In order to compare these two methods a numerical Monte Carlo experiment was carried out. The results of the experiment showed that the TS method is characterized by a greater numerical stability, which gives reliable results for almost every non-stationary sample, while the ML approach sometimes fails or gives unreliable results difficult to verify in practice. The TS method, and more specifically its first stage, the weighted least square approach (WLS), also provides more accurate estimates of the time-dependent mean and standard deviation, even though the precision of the estimates of the trends themselves is similar in both methods. What is more important, the estimated values of moments in the TS method do not depend on the model (distribution function) choice, which is used to the estimation of time-dependent quantiles. The model independence opens room for use of the TS method in non-stationary regional FFA.

If the probability distribution of the population from which the measuring sequence generated is unknown (i.e. always), the TS method gives more accurate time-dependent flood quantiles than the ML, regardless of the size of the random sample \((N)\), moment \((t)\) and the probability of non-exceedance \((P)\).

Both approaches (TS and ML) was used to estimate trends in the first two moments and to calculated time-dependent flood quantiles for 31 measuring series of the maximum annual and seasonal flows. The analysis of the results indicates significant differences in the assessment of trends in the mean and standard deviation. The differences between the results for the quantiles were smaller, but grow with a probability of exceedance of the quantile and the distance from the middle of the time series. When there is no trend in standard deviation (or it is technically negligible) and we assume linear trend in mean the time-dependent quantiles equal to stationary quantiles when they are calculated for the time at the centre of the sample. Obviously, the difference increases when moving away from the centre. The difference of stationary and non-
stationary quantiles in future years shows that, if the trends continue, one can expect the
important changes in design values. This point out that the use of stationary FFA when we are
aware of the variation in hydrological datasets is far too much a simplification and leads to the
erroneous results and decisions. So, when we know that the process is non-stationary, non-
stationary methods should be also used for the analysis. On the other hand, the possibility of
non-stationary modelling of complex hydrological phenomena is still limited. However, recent
initiatives and extensive research on non-stationary FFA (e.g. Montanari, *et al*., 2013, Hall, *et
al*., 2013, Vogel, *et al*., 2013) result in promising practical methods that would help to tackle this
problem.

According to the criterion of maximum likelihood the distribution best-fitting to the series
of annual and summer maxima on the Vistula River in Warsaw is three-parameter Pearson Type
III distribution and for the winter maxima Weibull distribution. Large differences in the values
of the trends in moments by the ML and TS are the cause of significant differences in flood
quantiles.

To conclude, it is difficult to indicate the combination of a method/model that gives the
results closest to reality. However, referring to the numerical experiment the TS method can be
recommended, leaving the choice of the probability distribution of the analyst’s experience and
preferences.

Despite the fact, that the statistical techniques used in both approaches are relatively
complex, still the non-stationary models are only a simplified description of the actual volatility
of the quantile of maximum flow in rivers. Although we observe a significant progress in non-
stationary flood frequency analysis, this area is still in its infancy and requires huge efforts of
the researchers and practitioners in order to meet the requirements of flood risk assessment in
a non-stationary water regime.

Acknowledgements. This research project was partly financed by the Grant of the Polish
Ministry of Science and Higher Education Iuventus Plus IP 2010 024570 ‘Analysis of the
efficiency of estimation methods in flood frequency modelling’, Grant of the National Science
Centre (contract no. 2011/01/B/ST10/06866): ‘Stochastic flood forecasting system (The River
Vistula reach from Zawichost to Warsaw)’ and made as the Polish contribution to COST Action
ES0901 ‘European Procedures for Flood Frequency Estimation (FloodFreq)’. The flow data
were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

REFERENCES

Hydrology*, 225, pp. 107–122, 2002

Davison, A.C. and Smith, R.L.: Models for exceedances over high thresholds. *Journal of the

Feluch, W., Selected methods of kernel estimation of probability density function and
regression in hydrology. (Wybrane metody jądrowej estymacji funkcji gęstości
prawdopodobieństwa i regresji w hydrologii). *Prace Naukowe Inż. Środowiska, PW,
Warsaw* (in Polish), 1994

11
List of tables

Table 1. The ratios of the trend values in mean and standard deviation got by the WLS to the one by the ML approach.

Table 2 The ratio of estimated quantile $Q_{F=0.9}$ got by TS to ML for selected moments in time: $t = 1$ (beginning of the time series – 1951), $t = 25$ (~middle of the series – 1975), $t = 55$ (end of the series – 2005) and $t = 65$ (prediction for the 10th year after the time series – 2015).

Table 3 The values of the trend coefficients and quantiles of annual and seasonal maximal flows for the 10- and 100-year floods for the Warszawa-Nadwilanówka gauging station got by both methods of non-stationary flood frequency analysis.

List of figures

Figure 1. The values of the estimated trends (slope – a, c and intersect – b, d parameters) in mean and standard deviation got by the WLS and MLM methods averaged over 1000 Monte Carlo simulations.

Figure 2. The quantile $X_{F=0.9}^t$ estimation errors got by the TS and MLM methods and selected discrete time – average values in 1000 Monte Carlo simulations.

Figure 3. Maximal annual discharges for Warsaw-Nadwilanowka gauge in 1951-2005.
Table 1. The ratios of the trend values in mean and standard deviation got by the WLS to the one by the ML approach.

<table>
<thead>
<tr>
<th>Town</th>
<th>GEV a_{WLS}/a_{ML}</th>
<th>b_{WLS}/b_{ML}</th>
<th>c_{WLS}/c_{ML}</th>
<th>d_{WLS}/d_{ML}</th>
<th>Gumbel a_{WLS}/a_{ML}</th>
<th>b_{WLS}/b_{ML}</th>
<th>c_{WLS}/c_{ML}</th>
<th>d_{WLS}/d_{ML}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jawiszowice</td>
<td>1.17</td>
<td>0.97</td>
<td>0.27</td>
<td>0.29</td>
<td>1.01</td>
<td>1.03</td>
<td>1.75</td>
<td>1.14</td>
</tr>
<tr>
<td>Tyniec</td>
<td>0.95</td>
<td>0.97</td>
<td>0.69</td>
<td>0.70</td>
<td>1.06</td>
<td>1.04</td>
<td>1.35</td>
<td>1.33</td>
</tr>
<tr>
<td>Jagodniki</td>
<td>0.84</td>
<td>0.98</td>
<td>−0.42</td>
<td>0.70</td>
<td>1.02</td>
<td>1.03</td>
<td>−0.93</td>
<td>1.05</td>
</tr>
<tr>
<td>Szczucin</td>
<td>1.05</td>
<td>0.97</td>
<td>0.14</td>
<td>0.58</td>
<td>1.20</td>
<td>1.03</td>
<td>0.23</td>
<td>1.06</td>
</tr>
<tr>
<td>Sandomierz</td>
<td>0.98</td>
<td>0.98</td>
<td>0.74</td>
<td>0.74</td>
<td>1.02</td>
<td>1.01</td>
<td>1.05</td>
<td>1.04</td>
</tr>
<tr>
<td>Jawiszowice</td>
<td>1.15</td>
<td>0.98</td>
<td>1.07</td>
<td>0.74</td>
<td>1.14</td>
<td>1.01</td>
<td>1.27</td>
<td>0.98</td>
</tr>
<tr>
<td>Puławy</td>
<td>0.92</td>
<td>0.99</td>
<td>0.64</td>
<td>0.84</td>
<td>0.97</td>
<td>1.01</td>
<td>1.00</td>
<td>1.05</td>
</tr>
<tr>
<td>Warsaw</td>
<td>0.93</td>
<td>0.99</td>
<td>−0.01</td>
<td>0.94</td>
<td>0.82</td>
<td>1.00</td>
<td>−0.02</td>
<td>1.11</td>
</tr>
<tr>
<td>Kępa</td>
<td>0.99</td>
<td>1.00</td>
<td>1.34</td>
<td>0.99</td>
<td>1.00</td>
<td>1.12</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Toruń</td>
<td>1.01</td>
<td>1.00</td>
<td>4.31</td>
<td>0.99</td>
<td>1.01</td>
<td>1.00</td>
<td>3.92</td>
<td>1.00</td>
</tr>
<tr>
<td>Tczew</td>
<td>1.03</td>
<td>1.00</td>
<td>1.53</td>
<td>1.02</td>
<td>1.01</td>
<td>1.01</td>
<td>1.43</td>
<td>1.07</td>
</tr>
<tr>
<td>Żywiec</td>
<td>−2.62</td>
<td>0.94</td>
<td>0.79</td>
<td>0.60</td>
<td>0.60</td>
<td>1.04</td>
<td>1.78</td>
<td>1.26</td>
</tr>
<tr>
<td>Sucha</td>
<td>0.87</td>
<td>1.01</td>
<td>0.79</td>
<td>0.69</td>
<td>0.96</td>
<td>1.07</td>
<td>2.30</td>
<td>1.20</td>
</tr>
<tr>
<td>Wadowice</td>
<td>0.73</td>
<td>0.99</td>
<td>−0.07</td>
<td>0.67</td>
<td>0.89</td>
<td>1.05</td>
<td>−0.05</td>
<td>1.17</td>
</tr>
<tr>
<td>Rudze</td>
<td>0.68</td>
<td>1.11</td>
<td>−0.23</td>
<td>1.03</td>
<td>0.90</td>
<td>1.05</td>
<td>−0.97</td>
<td>1.16</td>
</tr>
<tr>
<td>Stróża</td>
<td>1.01</td>
<td>0.98</td>
<td>0.69</td>
<td>0.69</td>
<td>1.34</td>
<td>1.04</td>
<td>1.06</td>
<td>1.11</td>
</tr>
<tr>
<td>Proszówki</td>
<td>0.17</td>
<td>0.79</td>
<td>0.26</td>
<td>0.59</td>
<td>0.16</td>
<td>0.80</td>
<td>0.29</td>
<td>0.72</td>
</tr>
<tr>
<td>Nowy Sącz</td>
<td>2.32</td>
<td>0.92</td>
<td>0.27</td>
<td>0.17</td>
<td>0.73</td>
<td>1.04</td>
<td>1.83</td>
<td>1.24</td>
</tr>
<tr>
<td>Zabno</td>
<td>1.36</td>
<td>0.95</td>
<td>1.03</td>
<td>0.53</td>
<td>1.07</td>
<td>1.03</td>
<td>1.49</td>
<td>1.19</td>
</tr>
<tr>
<td>Nowy Targ</td>
<td>1.06</td>
<td>0.93</td>
<td>0.50</td>
<td>0.39</td>
<td>1.07</td>
<td>1.03</td>
<td>1.20</td>
<td>1.11</td>
</tr>
<tr>
<td>Zakopane</td>
<td>0.53</td>
<td>1.05</td>
<td>−1.26</td>
<td>0.92</td>
<td>0.80</td>
<td>1.07</td>
<td>4.23</td>
<td>1.42</td>
</tr>
<tr>
<td>Muszyna</td>
<td>0.73</td>
<td>0.96</td>
<td>2.24</td>
<td>1.02</td>
<td>0.60</td>
<td>0.97</td>
<td>2.09</td>
<td>1.38</td>
</tr>
<tr>
<td>Stary Sącz</td>
<td>0.80</td>
<td>0.97</td>
<td>1.13</td>
<td>0.92</td>
<td>0.86</td>
<td>1.00</td>
<td>1.50</td>
<td>1.19</td>
</tr>
<tr>
<td>Koszyce W.</td>
<td>3.63</td>
<td>0.80</td>
<td>−0.79</td>
<td>0.11</td>
<td>1.10</td>
<td>1.02</td>
<td>1.43</td>
<td>1.03</td>
</tr>
<tr>
<td>Jarosław</td>
<td>1.08</td>
<td>1.00</td>
<td>3.11</td>
<td>1.05</td>
<td>0.99</td>
<td>1.01</td>
<td>2.07</td>
<td>1.23</td>
</tr>
<tr>
<td>Radomyśl</td>
<td>0.42</td>
<td>0.98</td>
<td>1.69</td>
<td>0.84</td>
<td>0.51</td>
<td>1.00</td>
<td>1.63</td>
<td>0.96</td>
</tr>
<tr>
<td>Trynica</td>
<td>2.37</td>
<td>0.85</td>
<td>0.81</td>
<td>0.96</td>
<td>2.30</td>
<td>0.88</td>
<td>0.93</td>
<td>1.30</td>
</tr>
<tr>
<td>Żółków</td>
<td>0.95</td>
<td>0.96</td>
<td>0.32</td>
<td>0.74</td>
<td>1.04</td>
<td>1.02</td>
<td>0.64</td>
<td>1.41</td>
</tr>
<tr>
<td>Mielec</td>
<td>1.52</td>
<td>0.99</td>
<td>−0.15</td>
<td>0.83</td>
<td>0.85</td>
<td>1.01</td>
<td>−0.32</td>
<td>1.13</td>
</tr>
<tr>
<td>Kleczany</td>
<td>−1.40</td>
<td>0.82</td>
<td>−6.42</td>
<td>0.10</td>
<td>1.46</td>
<td>1.01</td>
<td>1.95</td>
<td>0.93</td>
</tr>
<tr>
<td>Wyszków</td>
<td>1.05</td>
<td>1.02</td>
<td>1.31</td>
<td>1.12</td>
<td>1.04</td>
<td>1.03</td>
<td>1.51</td>
<td>1.33</td>
</tr>
</tbody>
</table>
Table 2 The ratio of estimated quantile \(X_{0.9}\) got by TS to ML for selected moments in time:

- \(t = 1\) (beginning of the time series – 1951), \(t = 25\) (~middle of the series – 1975), \(t = 55\) (end of the series – 2005) and \(t = 65\) (prediction for the 10th year after the time series – 2015).

<table>
<thead>
<tr>
<th>Location</th>
<th>(X_{ts}^{est}/X_{ml}^{est}) for GEV</th>
<th>(X_{ts}^{est}/X_{ml}^{est}) for Gumbel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jawiszowice</td>
<td>(t = 1) 0.79</td>
<td>(t = 25) 0.74</td>
</tr>
<tr>
<td>Tyniec</td>
<td>(t = 1) 0.87</td>
<td>(t = 25) 0.80</td>
</tr>
<tr>
<td>Zagodniki</td>
<td>(t = 1) 0.91</td>
<td>(t = 25) 0.99</td>
</tr>
<tr>
<td>Szczucin</td>
<td>(t = 1) 0.94</td>
<td>(t = 25) 0.96</td>
</tr>
<tr>
<td>Sandomierz</td>
<td>(t = 1) 0.98</td>
<td>(t = 25) 0.98</td>
</tr>
<tr>
<td>Zawichost</td>
<td>(t = 1) 0.96</td>
<td>(t = 25) 0.98</td>
</tr>
<tr>
<td>Puławy</td>
<td>(t = 1) 0.98</td>
<td>(t = 25) 1.00</td>
</tr>
<tr>
<td>Warsaw</td>
<td>(t = 1) 1.02</td>
<td>(t = 25) 1.00</td>
</tr>
</tbody>
</table>

Note: No results for ML
Table 3 The values of the trend coefficients and quantiles of annual and seasonal maximal flows for the 10- and 100-year floods for the Warszawa-Nadwilanówka gauging station got by both methods of non-stationary flood frequency analysis.

<table>
<thead>
<tr>
<th>Method</th>
<th>Best model</th>
<th>Values of the trend coefficients</th>
<th>$V_{F} = 0.9$</th>
<th>$V_{F} = 0.99$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>α β γ δ</td>
<td>$t = 1$ $t = 25$ $t = 55$ $t = 65$</td>
<td>$t = 1$ $t = 25$ $t = 55$ $t = 65$</td>
</tr>
<tr>
<td>ML</td>
<td>Year</td>
<td>Pe3 -3.89 2879.66 3.57 1190.24</td>
<td>3692 3657</td>
<td>5211 5286</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>Pe3 -1.70 2235.67 -0.43 1477.75</td>
<td>3692 3657</td>
<td>5211 5286</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>We3 -2.55 2180.96 1.11 924.52</td>
<td>3692 3657</td>
<td>5211 5286</td>
</tr>
<tr>
<td>TS</td>
<td>Year</td>
<td>Pe3 -2.79 2849.15 -0.06 1185.38</td>
<td>4470 4115</td>
<td>6762 6672</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>Pe3 0.56 2165.83 -10.80 1633.51</td>
<td>4470 4115</td>
<td>6762 6672</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>We3 -7.54 2320.41 6.93 744.34</td>
<td>4470 4115</td>
<td>6762 6672</td>
</tr>
<tr>
<td></td>
<td>Year by seasonal approach (summer: Pe3, winter: We3)</td>
<td>4494 4323</td>
<td>4470 4115</td>
<td>6762 6672</td>
</tr>
</tbody>
</table>

Figures

Figure 1. The values of the estimated trends (slope – a, c and intersect – b, d parameters) in mean and standard deviation got by the WLS and MLM methods averaged over 1000 Monte Carlo simulations.
Figure 2. The quantile $X_{F=0.9}$ estimation errors got by the TS and MLM methods and selected discrete time – average values in 1000 Monte Carlo simulations.
Figure 3. Maximal annual discharges for Warsaw-Nadwilanowka gauge in 1951-2005.