Interactive comment on “Automatic classification of manual snow profiles by snow structure” by F. Techel and C. Pielmeier

F. Monti (Referee)

monti@slf.ch

Received and published: 7 February 2014

This paper provides a method to automatically assess the snow cover stability starting from snow stratigraphy properties, which are commonly analyzed with fairly subjective methods. The proposed automatic snow profile classification (SNPKindex) is a remarkable approach because it takes into account not only the properties of a single layer (i.e. weak layer) but also the characteristics of the whole snowpack for providing an indication of its stability. Moreover, in this work a handy method to summarize and visualize the information obtained by the automatic stability classification is suggested providing a very useful tool for avalanche forecasters.

SPECIFIC COMMENTS 1) Since two factors on three of the proposed method are
based on the threshold sum approach, which was developed to assess persistent in-
stabilities, it should be stressed the SNPKindex is mostly suitable for this kind of is-
ssues. 2) SNPKindex is based on three variables depending on stratigraphy variables,
which are accounted for the snow structure classification (SNPKmanual) as well. As-
sessing the correlation between SNPKindex and SNPKmanual provides an indication
about the agreement of the two methods but does not show the real capability of the
SNPKindex in forecasting the snowpack stability. I think showing a comparison be-
tween SNPKindex and an independent snow stability indication (e.g. rutschblock score
+ rutschblock release type) would be useful to better understand the capability of the
SNPKindex in providing snow stability information.

TECHNICAL COMMENTS 7454_13-19: don’t you think snow density could be an im-
portant parameter for obtaining information on snowpack structure? E.g.: a less dense
layer will facet faster than a denser one. Moreover density is one of the few para-
ters are not estimated but measured. 7457_20-25: maybe a weibull distribution as the
one proposed by (Mitterer, 2008) could be suitable to better standardize this param-
eter. 7458_14-15: I think it would be really interesting to characterize the misclassified
profiles (stable, fair or unstable).

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., 1, 7449, 2013.