Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
doi:10.5194/nhess-2016-356
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
06 Dec 2016
Review status
This discussion paper is under review for the journal Natural Hazards and Earth System Sciences (NHESS).
Numerical rainfall simulation with different spatial and temporal evenness by using WRF multi-physics ensembles
Jiyang Tian1, Jia Liu1,2, Chuanzhe Li1, and Fuliang Yu1 1State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
2State Key Laboratory of Hydrology-Water Resource and Hydraulirc Engineering, Hohai University, Nanjing, 210098, China
Abstract. The Weather Research and Forecasting (WRF) model is used in this study to simulate six storm events in two semi-humid and semi-arid catchments of Northern China. The six storm events are classified into four types based on the rainfall evenness in the spatial and temporal dimensions. Two microphysics, two planetary boundary layers (PBL) and three cumulus parameterizations are combined to develop 12 physical ensembles for rainfall generation. The WRF model performs the best for Type 1 event with relatively even distributions of rainfall in both space and time. The average relative error (ARE) for the cumulative rainfall amount is 16.98 %. For the spatial rainfall simulation, the lowest root mean square error (RMSE) is found with event II (0.3989) which has the most even spatial distribution, and for the temporal simulation the lowest RMSE is found with event I (1.0171) which has the most even temporal distribution. It is found to be the most difficult to reproduce the very convective storm with uneven spatiotemporal distributions (Type 4 event) and the average relative error (ARE) for the cumulative rainfall amounts is up to 68.07 %. The RMSE results of Event III with the most uneven spatial and temporal distribution are 0.9363 for the spatial simulation and 2.7769 for the temporal simulation, which are much higher than the other storms. The general performance of the current WRF physical parameterisations is discussed. The Betts-Miller-Janjic (BMJ) is found to be unsuitable for rainfall simulation in the study sites. For Type 1, 2, and 4 storms, ensemble 4 performs the best. For Type 3 storms, ensemble 5 and 7 are the better choice. More guidance is provided for choosing among the physical parameterisations for accurate rainfall simulations of different storm types in the study area.

Citation: Tian, J., Liu, J., Li, C., and Yu, F.: Numerical rainfall simulation with different spatial and temporal evenness by using WRF multi-physics ensembles, Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-356, in review, 2016.
Jiyang Tian et al.
Jiyang Tian et al.
Jiyang Tian et al.

Viewed

Total article views: 204 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
184 19 1 204 0 0

Views and downloads (calculated since 06 Dec 2016)

Cumulative views and downloads (calculated since 06 Dec 2016)

Viewed (geographical distribution)

Total article views: 204 (including HTML, PDF, and XML)

Thereof 201 with geography defined and 3 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 25 Feb 2017
Publications Copernicus
Download
Short summary
How to simulate and predict the precipitation accurately by numerical weather prediction is a difficult task for medium sized catchments in semi-humid and semi-arid regions. This study indicates that using multi-physics ensembles is a good method to reduce the uncertainties of rainfall simulation. More guidance is provided for choosing the physical parameterisations for accurate rainfall simulations of different storm types in semi-humid and semi-arid regions.
How to simulate and predict the precipitation accurately by numerical weather prediction is a...
Share