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Abstract 10 

The Chi-Chi earthquake in 1999 caused tremendous landslides which triggered many debris 11 

flows and resulted in significant loss of public lives and property. Therefore, the critical rainfall 12 

line of several debris flow streams have been reduced caused Chi-Chi earthquake. To help 13 

preventing the damage of debris flow, setting a critical rainfall line for each debris-flow stream 14 

is necessary. In order to comprehend the critical rainfall line changes, this study utilizes first 15 

four years dataset, however, the occurrence of debris flow damges are not enough for analysis. 16 

Hence, this study adopts FCGA as clutering method to solve lack of data problem, in addtion, 17 

8 predisposing factors for debris flow were used to cluster 377 streams which have similar geo-18 

factors into 7 groups via the genetic algorithm. Then, support vector machines (SVM) were 19 

applied to setup the critical rainfall line for debris flows. SVM is a machine learning approach 20 

proposed based on statistical learning theory and has been widely used on pattern recognition 21 

and regression. This theory raises the generalized ability of learning mechanisms according to 22 

the minimum disaster risk. Therefore, the advantage of using SVM can obtain results of 23 

minimized error rates without many training samples. Finally, the experimental results confirm 24 

that SVM method performs well in setting a critical rainfall line for each group of debris-flow 25 

streams. 26 

 27 
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1 Introduction 1 

Taiwan is a mountainous island with very steep terrain and fragile geology. The extremely 2 

heavy rainfall caused by typhoon and Mei-Yu often lead to large-scale debris flow damages in 3 

mountains of Taiwan every year. Especially after the Chi-Chi earthquake in 1999, a lot of 4 

landslides have occurred in the center of Taiwan (Lin et al., 2004; Chiou et al., 2007). These 5 

serious landslides often brought sediment material into the streambed, in the initiation area of 6 

debris flow. These sediment materials will be mobilized by the rainfall and cause numerous 7 

debris flow damages which result in significant loss of public lives and property in the 8 

following rainy or typhoon seasons. Furthermore, the landslides triggered by the Chi-Chi 9 

Earthquake will have a significantly upward trend in scale and frequency (Lin et al., 2006). This 10 

means that the debris flow damages have been more unpredictable and destructive with the 11 

amount of sediment materials (Lin and Tung, 2004). The numerous landslides triggered by Chi-12 

Chi Earthquake caused a lot of debris-flows (Shieh et al., 2009). Lowered their rainfall 13 

threshold of these debris-flows in subsequent years. Nakamura et al. (2000) also reported a 14 

huge number of landslides for about 42 years after the Kanto earthquake in Japan. Almost every 15 

landslides during that time induced server debris-flow damages. 16 

Thus, in order to prevent the damage of debris flow, setting a critical rainfall line for each 17 

debris-flow stream is necessary for defining potential region and avoiding diaster(Zhuang et 18 

al.,2015). In this research, we aim to setting a critical rainfall line for each debris-flow stream 19 

of each group from clustering analysis. Firstly, 377 debris-flow streams in the center of Taiwan 20 

affected by Chi-Chi earthquake are considered (Lin et al., 2004; Liu et al., 2013; Huang and 21 

Li, 2014). Then, 8 predisposing factors for debris flow were used to cluster streams into 7 22 

groups via the genetic algorithm. Streams with similar characteristics were then clustered 23 

together support vector machines (SVMs) applied to setup the critical rainfall line for each 24 

debris-flow clusters. The experimental result shows that SVM method performs well in setting 25 

a critical rainfall line for each group of debris-flow (Yuan et al., 2006). 26 

 27 

2 Study Area 28 

The Chi-Chi earthquake occurred in 1999 in Taiwan and caused numerous landslides, the 29 

locations of these landslides were up to 2365 and the total area were approximate 14347 30 

hectares, represented as Fig. 1(a). These landslides are mostly located in the mountains of 31 

central Taiwan. The debris flow streams are triggered by the landslides affected seriously by 32 
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the Chi-Chi earthquake in the experiments of previous study (Yu et al., 2014). 377 debris flow 1 

streams were chosen from 7 counties included Nan-Tou county, Maio-Li county, Taichung City, 2 

Taichung county, Chun-Chua county, Yun-Lin county and Chia-Yi county, represented as (Fig. 3 

1b). 4 

 5 

According to Shieh and Tsai (2001), 8 important characteristics of the 377 debris-flow streams 6 

including rock type (R), watershed area (A), effective watershed area (A15)(15o is the potential 7 

degree of slope for debris flow damages), landslide area (As), landslide ratio(As/A), length of 8 

channel in the effective watershed area (L), mean surface slope of the effective watershed area 9 

(Ss) and mean channel slope of the effective watershed area (Sc).Table 1. shows the eight 10 

characteristics of the 377 streams(Yuan et al., 2006; Wan and Lei, 2009; Bui et al., 2012). 11 

 12 

3 Data Processing 13 

In order to cluster the 377 debris flow streams into different groups, the statistical data of first 14 

four years (1999-2002) data after Chi-Chi earthquake including geographical information from 15 

central geological survey MOEA, hydrological information from central weather bureau in 16 

Taiwan, historical data of damage from internet-based news and statistical tables of eight 17 

predisposing factors have to be preprocessed. The preprocessing involved presentation of the 18 

data, normalization of the data and the measurement of the distance between two debris-flow 19 

streams. Eq. 1 represents the normalization of the data (Z-score). 20 

𝑍𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥𝑖̅

𝜎𝑖
, 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑗 ≤ 𝐾, 1 ≤ 𝑖 ≤ 𝑀                                                                 (1) 21 

Where M represents the 377 debris-flow streams and K is the eight attributes of each stream. 22 

Let Fi represent the ith debris flow where 1 ≤ 𝑗 ≤ 𝐾, and Fj represent the jth attribute of 8 23 

predisposing factors where 1 ≤ 𝑖 ≤ 𝑀. The corresponding attribute vector for the debris flow 24 

Fi is represented as Xij. The 𝑋  and σi are the mean and mean absolute deviation of Xij 25 

respectively. 26 

After data normalization, the distance between two debris-flows can be calculated. The 27 

centered Person correlation was used to define the distance D(Fi, Fj). Let Fi = (Xi1, Xi2,...Xik) 28 

and Fj = (Xj1, Xj2,...Xjk) be normalized attribute vectors of two flows over a series of K attributes. 29 
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The distance between flows Fi and Fj was defined as Eq. 2 where 𝑋̅𝑖 and 𝜎𝑋𝑖
 are refered to Eq.3 1 

and Eq.4. 2 

𝑆𝑖,𝑗 =
1

𝐾
∑ [

𝑋𝑖𝑙 − 𝑋𝑖

𝜎𝑋𝑖

] [
𝑋𝑗𝑙 − 𝑋𝑗

𝜎𝑋𝑖

]

𝑘

𝑙=1

, 𝑤ℎ𝑒𝑟𝑒 − 1 ≤  𝑆𝑖,𝑗  ≤ 1                               (2) 3 

𝑋𝑖̅ =
∑ 𝐹𝑖𝑙

𝑘
𝑙=1

𝑘
                                                                                                                         (3) 4 

σxi
= √

1

k
∑(Xil − Xi)

2
k

l=1

                                                                                                    (4) 5 

Since this term measures distance, the following was defined as Eq. 5 6 

𝐷(𝐹𝑖 , 𝐹𝑗) = 1 − 𝑆𝑖,𝑗, 𝑤ℎ𝑒𝑟𝑒 − 1 ≤ 𝐷(𝐹𝑖 , 𝐹𝑗) ≤ 1                                                (5) 7 
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4 Clustering analysis of debris-flow steam 9 

This section aims to cluster 377 debris-flow streams into seven groups, via clustering analysis 10 

such that streams in each group have similar characteristics. This study collects the first four 11 

years data after 921 earthquake to analyze the critical rainfall threshold of debris flow streams, 12 

however, there is not enough occurrence data for analyzing critical rainfall thresholds. 13 

Therefore, this study combines debris flow streams into one group with same patterns through 14 

clustering method to increase the numbers of debris flow occurrence data. An efficient 15 

clustering algorithm was considered for describing debris flows in order to illustrate the 16 

relationships by constructing a binary hierarchical tree (Yang and Kao, 2000). This approach 17 

was employed to group 377 debris flow streams into seven groups such that the critical rainfall 18 

line in the same group could be set. Many approaches to constructing binary hierarchical trees 19 

have been proposed. For example, Ward’s method (Ward, 1963), the single-linkage method 20 

(Sibson, 1973), the average-linkage method (Defays, 1977), and the average-linkage(Voorhees, 21 

1986) hierarchical clustering approach have been extensively applied in various fields to 22 

approximate such trees, including the fields of document clustering (Willet, 1988) and 23 

bioinformatics (Eisen et al., 1998; Alizadeh et al., 2000). 24 

In this study, a family competition genetic algorithm (FCGA) was used to construct a 25 

hierarchical tree of streams. The method used in this study combines family competition, 26 
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neighbor-join mutation (NJ) and edge assembly crossover (EAX)(Nagata & Kobayashi, 1997; 1 

Yang and Kao, 2000; Tsai et al., 2001; Tsai et al., 2002). The primary difference between the 2 

method in this study and that in our previous work is in the integration of these three 3 

mechanisms(Fig. 2).  4 

The experimental results revealed that the FCGA is a promising method for constructing the 5 

optimal tree of streams. Figure 3 presents the seven groups of 377 debris-flow streams on the 6 

basis of their patterns among 8 factors mentioned them in previous section. In Fig. 3(a)-(g), the 7 

x-axis represents the eight important characteristics and the y-axis is the normalized values of 8 

each characteristics each group include 39, 58, 61, 42, 67, 47 and 63 streams respectively. Each 9 

groups all exhibited different trends in their characteristics and the characteristics in the same 10 

group were similar. Additionally, it should be noted that Fig. 3(f) and 3(g) use different scales. 11 

The clustering results showed that the proposed method was able to cluster streams into separate 12 

groups with similar characteristics. As a result, this method represents a possible mean of 13 

establishing a critical rainfall line for debris flow streams in each group. The critical rainfall 14 

lines of each groups could be set according to the characteristics. 15 

 16 

5 Establishing the critical rainfall line for debris flows 17 

When the streams with similar characteristics have clustered together, the critical rainfall line 18 

of debris flow could be set via SVM. SVM is a new machine learning approach proposed by 19 

Vapnic(1998) based on statistical learning theory and structural risk minimization (SVM). The 20 

advantage of SVM is that this theory raises the generalized ability of learning mechanisms 21 

according to minimize the risk and reduces the probability of overfitting probelm under lack of 22 

data condition. Therefore, we can obtain the results with minimum error rates and without many 23 

training samples. Otherwise, SVM is an optimized algorithm which can be performed by a 24 

standard programming algorithm and obtained the global optima. The SVM has been widely 25 

applied in many disciplines to solve the problems of classification and regression in the field of 26 

hydrological engineering(Yu et al., 2011; Lin and Chen, 2011; Shen et al., 2011; Liang et al., 27 

2012). This study intends to establish the critical rainfall line of debris flow via SVM. 28 

Each data of debris flow stream were consider as a vector or a point in a multidimensional space. 29 

The hyper-plane separating the vectors into two parts, is then search for, according to the 30 

occurrence of debris flow (Fig. 4). (Vapnik, 1995) 31 
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 1 

However, two problems are frequently encountered during the process of classification. Figure 2 

5 shows the two problems, it is possible that there are many hyper-planes existed in the 3 

multidimensional space exactly. (Tax and Duin, 2002) 4 

 5 

Therefore, we switched these training data (Eq. 6) to a higher dimensional space called feature 6 

space via a non-linear function φ(x)(Eq. 7). 7 

Training data : [(x1,y1),(x2,y2),...,(xl,yl)]                                                                                   (6) 8 

where 𝑦𝑖 ∈ {+1, −1} as output data and xi is input vector 9 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛[𝑤𝑇 ∙ 𝜙(𝑥) + 𝑏]                                                                                                   (7) 10 

where 𝜙(𝑥) is non-linear function in feature space; w and b are the classifier parameters 11 

In the feature space, we could still find several hyper-planes can separate the training data into 12 

two groups. 13 
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where αi, αj are Largrange multipliers, C is the penality 15 

However, the method of SVM we applied can choose a particular plane from those hyper-planes 16 

named maximum margin hyper-plane (optimal hyper plane as Eq. 8). Fig. 6 shows that with the 17 

advantage of SVM, a maximum margin hyper-plane could be selected from several hyper-18 

planes. This maximum margin hyper-plane represents the inner product of the vector in the 19 

feature space. This inner product generally is made by a kernel function, hence we can easily 20 

find the maximum margin hyper-plane with a suitable kernel function. Under the situation of 21 

maximum margin hyper-plane, the sum of distance from those training data closest to the plane 22 

would be maximum. The decision-making hyper-plane for classification could be illustrated 23 

with less training data near the hyper-plane called support vector. Therefore, these training data 24 

can classified easily and efficiently(Vapnik, 1998; Ballabio and Sterlacchini, 2012). 25 

This section describes the result of the proposed method SVM to establish the critical rainfall 26 

line for each group of debris flows. When the debris flow streams with similar characteristics 27 
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have clustered together into seven group, the critical rainfall line of each debris-flow group 1 

could be set via SVM. Fig. 7(a)-(g) shows the critical rainfall line of group A, group B, group 2 

C, group D, group E, group F and group G, respectively. In Fig. 7, the yellow dots represent the 3 

rainfall data with debris flow events and the blue dots symbolize the rainfall data without debris-4 

flow event. The green zone represents a range of hazardous area with debris flow. In contrast, 5 

the black zone represents a range without debris flow. The boundary between the green area 6 

and black region stands for a critical rainfall line of each debris flow groups. 7 

Compared with the critical rainfall lines of each groups respectively, it could find that the 8 

critical rainfall lines of group D and group F were lower than others, showed in Table 2. It is 9 

possible that the group F have a higher landslides ratio (As/A) and group D have a vulnerable 10 

rock type (R) and steep slope on mean channel of the effective watershed area (Sc) and mean 11 

surface of the effective watershed area (Ss)(Fig. 3). In contrast, group A and group E have 12 

higher critical rainfall lines with each characteristic lower than the average of other groups. 13 

Overall, most of critical rainfall lines have a obviously decreasing pattern after Chi-Chi 14 

earthquake, especially for Gorup D and F, these two groups are influenced by high landslide 15 

ratio which is produced by Chi-Chi earthquake. Due to the results above, the original critical 16 

rainfall lines might be changed, and this is the reason why this study estableshes new crtical 17 

rainfall lines for debris flow streams because they are not suitable for them after large 18 

earthquake. As a result, we can establish the critical rainfall lines of each debris flow groups 19 

clustered together with similar characteristic via support vector machine. The critical rainfall 20 

lines were set according to the characteristic of debris flow. 21 

 22 

6 Conclusions 23 

This study aims to set up the critical rainfall line of debris flows via a series of statistical 24 

methods after Chi-Chi earthquake. 377 debris-flow streams in the center of Taiwan affected by 25 

Chi-Chi earthquake and 8 predisposing factors for debris flow were considered. Due to lack of 26 

data problem, 377 debris flow streams were clustered into 7 groups with similar characteristic 27 

via family competition genetic algorithm, then support vector machine was used to set up the 28 

critical rainfall line of each debris flow groups. The results reveal that SVM can establish the 29 

critical rainfall lines of debris flow successfully and the critical rainfall lines were set according 30 

to the characteristic of each debris flow groups. The significant changes of critical rainfall lines 31 

after Chi-Chi earthquake has found in Group D and F, and this phenomenon is caused by high 32 
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landslide ratio. Hence, the method proposed in this study can be an effective instrument for 1 

establishing critical rainfall lines. In the future, the weights and the interactions of the 2 

predisposing characteristics would be the focus of research. 3 

 4 

 5 
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Table 1. The statistical table of 8 characteristics with 377 streams. 1 

R As/A (%) Sc (
o) Ss (

o) 

Type Stream No. Range Stream No. Range Stream No. Range  Stream No. 

Alluvion 4 0~5 3 0~10 3 0~0.5 81 

Conglomerate 30 5~10 9 10~15 11 0.5~1.0 35 

Sand stone 35 10~15 67 15~20 42wq 1.0~2.0 65 

Sand & shale 191 15~20 115 20~25 80 2.0~3.0 39 

Shale 5 20~25 99 25~30 103 3.0~5.0 45 

Slate 55 25~30 56 30~35 93 5.0~10.0 49 

Metamorphic 

sand  

57 ＞30 28 ＞35 45 ＞10.0 63 

        

A (hectare) A15 (hectare) As (hectare) L (km) 

Range Stream No. Range Stream No. Range Stream No. Range Stream No. 

0~10 13 0~10 23 0~0.1 59 0~0.5 54 

10~20 19 10~20 34 0.1~0.5 45 0.5~1.0 88 

20~30 18 20~30 22 0.5~1.0 37 1.0~1.5 78 

30~40 32 30~40 30 1.0~2.0 53 1.5~2.0 44 

40~50 17 40~50 28 2.0~3.0 25 2.0~3.0 53 

50~60 19 50~60 23 3.0~4.0 30 3.0~4.0 19 

60~70 18 60~70 18 4.0~5.0 23 4.0~5.0 10 

70~80 13 70~80 13 5.0~10.0 38 5.0~6.0 11 

80~90 19 80~90 19 10.0~20.0 29 6.0~7.0 4 

90~100 14 90~100 12 20.0~30.0 15 7.0~8.0 4 

100~200 91 100~200 71 30.0~40.0 9 8.0~9.0 1 

200~300 30 200~300 27 40.0~100.0 8 9.0~10.0 4 

300~500 36 300~500 25 ＞100.0 6 ＞10.0 7 

＞500 38 ＞500 32     

A15: The effective watershed area is the region where is located over 15° of riverbed. 
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Table 2. The value of critical rainfall line of each debris flow groups. 3 

Group  Group A Group B Group C Group D Group E Group F Group G 

Rainfall 

Intensity  
31.5 23 18 23.5 40.5 22.5 18.5 

Rainfall  

Accumulation 
235.5 195 195 70 218 50 280 
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Figure 1.(a)The position and landslide area of 377 debris-flow streams in central Taiwan; 3 

1.(b)The historical damage and position of 377debris-flow streams in central Taiwan. 4 
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Figure 2. FCGA and hirachical tree analysis results3 
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Figure 3. The results of clustering analysis on 377 debris-flow streams.3 



 18 

 1 

 2 

Figure 4. The multidimensional space with vector of debris-flow. 3 
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Figure 5. The examples of problems encountered in most cases.3 
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Figure 6. An example of maximum margin hyper-plane and support vector. 3 
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Figure 7. The result of our research tested on 7 groups. 2 


