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Abstract

One of the Gravity Recovery and Climate Experiment (GRACE) products, the Terres-
trial Water Storage Anomaly (TWSA), was used for assessing large-scale flood risk
through Reager’s Flood Potential Index (RFPI) by Reager and Famiglietti (2009). The
efficacy of the proposed RFPI for flood risk assessment was evaluated over the conti-5

nental US using multi-year flood observation data from 2003 to 2012 by the US Geo-
logical Survey and Dartmouth Flood Observatory. In general, the flood risk based on
the RFPI agreed well with the observed floods on regional and even local scales. The
method exhibits higher skill in predicting the large-area, long-duration floods, especially
during the summer season.10

1 Introduction

Globally, floods rank first in natural disasters by the total number of people affected
and the cost (Center for Research on the Epidemiology of Disasters, 2013). Intensive
precipitation events have increased during the final decades of the 20th century (Gro-
isman et al., 2005; Alexander et al., 2006; Trenberth, 2011) and are expected to further15

intensify in the future (Groisman, 2012). In response, many countries have developed
flood alert systems, such as the European Flood Alert System (Bartholmes, 2009) and
the National Weather Service Automated Flood Warning System (Scawthorn, 1999) in
the United States. While most of the systems rely on a dense network of gage sta-
tions, over 95 % of all deaths and a significant part of the economic losses caused by20

floods occur in developing countries where ground flood monitoring and management
programs are still inefficient, and the costs of building control infrastructure such as
dams, weirs, embankments, and gage stations can be prohibitive (Tariq, 2011). These
problems were well demonstrated during the 2010 flood disaster in Pakistan (Larkin,
2010) where the deficiencies in flood monitoring and the ensuing lack of information led25
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to coordination chaos (Hagen, 2011) and contributed towards an estimated $35 billion
(US) loss in economic impact.

To compensate for or complement the ground based observations, flood monitor-
ing is increasingly using the products obtained with remote sensors such as NASA’s
AMSR-E (Wang et al., 2003), Quick Scatterometer (QuickSCAT) (Brakenridge et al.,5

2003), Spinning Enhanced Visible and InfraRed Imager (SEVIRI) (Proud et al., 2011),
and Moderate Resolution Imaging Spectroradiometer (MODIS) (Brakenridge and An-
derson, 2006). Among the remote sensing products that have been used for flood
monitoring, data from the Gravity Recovery and Climate Experiment (GRACE) (Adam,
2002; Chen et al., 2004) is unique in that the changes in the amount of terrestrial water10

are directly measured. Reager and Famiglietti (2009) used a GRACE-derived Total Wa-
ter Storage Anomaly (TWSA) product together with precipitation data to estimate flood
risks worldwide. They combine past variations in total water storage with the record
of recent precipitation to generate Reager’s Flood Potential Index (RFPI). A qualitative
comparison of calculated RFPI with the Dartmouth Flood Observatory (DFO) dataset15

of historic floods showed that the GRACE gravitational data in general and the pro-
posed RFPI product in particular are useful for flood risk assessment in most regions.
However no quantitative validation results were reported. This leads to the main ob-
jective of our study: evaluate the skill of RFPI for flood forecasting over the continental
US, where floods are routinely monitored.20

2 Data and methodology

2.1 Flood Potential Index

The concept of RFPI is explained in detail in Reager and Famiglietti (2009). Briefly,
the historical TWSA from GRACE provides an estimate of the range of the amount of
water a region can hold, or storage deficit; and flood risk is estimated by comparing25

precipitation with this range. The values of RFPI vary from −∞ and 1, with positive val-
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ues indicating that water input from precipitation is above the mean water storage and
should be interpreted as a potential risk for flooding. The GRACE Release-5 10/2012
TWSA product (Adam, 2002) and CPC Merged Analysis of Precipitation (CMAP) data
(Xie and Arkin, 1997) were used in this study. Both datasets are monthly spanning from
January 2003 to August 2012 at 1◦ ×1◦ geographical latitude and longitude grid.5

2.2 Flood observation data

Two flood datasets were used: (1) DFO (Brakenridge and Anderson, 2006) and (2)
the US Geological Survey (USGS) Retrieve Summary of Recent Flood and High Flow
Conditions (Hirsch and Costa, 2004). These datasets differ substantially in that the
DFO is derived from news and governmental sources and hence mainly refers to large10

floods in denser-populated regions whereas the USGS reports are based on in situ
stream gages. In addition, the DFO data cover the period from 1985 till present and the
USGS data are available since October 2007.

DFO classifies a flood as “large” if a significant damage to structures or agriculture,
human life loss and/or flood event of long duration. Since DFO data are mainly based15

on damage to infrastructure and loss of life as reported by media, its coverage is ex-
pected to bias towards the more densely populated regions and/or regions of interest
for particular organizations. The DFO data were downloaded as a GIS vector dataset
providing an outline of the area affected by a flood with such attributes as flood dates,
duration, fatalities, primary country of flooding, etc. The data were further screened for20

quality control. For example, in several instances in 2006 and 2009 a mismatch was lo-
cated between the assigned flood’s geographical coordinates and the primary country
of flooding; these events were excluded from our analysis. Finally, vector maps of DFO
flood events were rasterized to 1◦ ×1◦ grids.

The USGS deploys 9044 gages in the continental US (Fig. 1) for flood monitoring.25

Each gage daily reports a flood as a flow overtopping the natural or artificial banks.
A flood is further categorized into minor, moderate or major, with number of days in
a month in each flood category also reported. Because significant difference exists in
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spatial scale between GRACE RFPI data and USGS gage based flood reports, the
USGS data was aggregated into 1◦×1◦ grid. First, to ensure statistical significance, all
grid cells containing less than 5 USGS gage stations were excluded from the analysis
(Fig. 1). For each of those grid cells with more than 5 stream gage stations, gage
reports were combined by all the stations within the cell into a monthly flood coefficient5

X :

X =
Dmi +5 ·Dmo +10 ·Dma

N
(1)

where N represents the total number of stations within a cell; Dmi, Dmo and Dma
are total numbers of days when the stations within a cell reported minor, moderate or
major floods, respectively. Flood duration, geographical extent and flood stage are all10

taken into account in Eq. (1). Analyzing several events from the DFO database and the
corresponding X coefficient estimated from Eq. (1), it was found that areas with cells
that are flagged as flooded with X greater than 0.5 agreed well with the DFO flood
report (Fig. 2). A value of 0.5 for the X coefficient indicates that within a grid cell, 50 %
of the gages reported minor flood for 1 day, or 10 % of the gages reported moderate15

flood for 1 day, or 1 % of stations reported major flood for 1 day. In further analysis
it was assumed that a grid cell is experiencing a large flooding if the X coefficient
is greater than 0.5. In Eq. (1) weighs of 1, 5 and 10 were assigned to differentiate
minor, moderate and major flooding. The exact values for weighting are not important
in our analysis because the values of X estimated using different weighting are linearly20

related. For example, if a weighting scheme of 1, 2 and 3 is used, then a flood trigger
would be X ≥ 0.1.

2.3 Forecasting skill assessment

Forecasting skill is an overall measure of how well the previous forecasts were as-
sociated with previous observations (Murphy and Winkler; 1997). Receiver Operating25
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Characteristics (ROC) (Fawcett, 2006) is commonly used as a method for testing the
performance of a continuous index (such as RFPI) against binary observational data
(e.g., flood or no flood). It uses a binary classifier that maps the index values below and
above a certain threshold τ to the occurrence of an event. Since the exact threshold
value is unknown a priori, the ROC analysis is performed for a range of possible thresh-5

old values. For each threshold, a pair of true positive rate (TPR) and false positive rate
(FPR) was generated by constructing a contingency table (see Table 1). An ROC curve
plots TPR vs. FPR for different thresholds and two additional points (0; 1) and (1; 1)
are added to “anchor” the curve (see Fig. 3). On the ROC plot the 1:1 line represents
the result of a random guessing.10

The AUC (the Area Under Curve) is the area that resides beneath the ROC curve.
AUC values greater than 0.5 correspond to better index performance with AUC= 0.5
related to no skill and AUC> 0.7 indicating a strong predictive skill (Morrison, 2005). In
practice, the 0.6, 0.7, 0.8, and 0.9 AUC values are frequently used as the thresholds for
fair, satisfactory, good, and excellent predictive skill. The optimal value of the classifier15

threshold τ can also be estimated from the ROC plot. Generally, the optimal threshold
value is the one with the corresponding point on the ROC curve that is the closest to
the (0, 1) point (Fig. 3).

3 Results

A satisfactory to good agreement was found between the RFPI and the observed floods20

from both the DFO and filtered USGS data for the conterminous USA; the AUC values
was 0.75 for the comparison of RFPI with DFO flood observations and 0.72 when
compared to USGS which indicates a strong predictive skill (Morrison, 2005). Figure 4
shows ROC curves for the comparison of RFPI with USGS flood observations from
2007 to 2012 and with DFO data from 2003 to 2012. Since DFO flood observations are25

biased towards high-damage and large-scale floods, the RFPI skill measured against
this dataset is higher, as can be expected, in comparison with the USGS observa-
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tions. The optimal threshold values for τ are −0.4 and −0.3 respectively, depending on
whether USGS or DFO data are compared to.

The validation against the USGS data has also demonstrated ability of the RFPI to
estimate flood risks at a watershed level in large flat areas (Fig. 5), e.g. the Great Plains
region, with AUC persistently exceeding the 0.7 strong predictive skill level. At the same5

time, we found that over the mountainous and coastal regions the RFPI has a limited
ability of flood monitoring (Fig. 5). The resulting ROC curves have different shapes
and the optimal threshold varies between −0.4 and 0.1 for different watersheds. The
RFPI skill, however, varies over the seasons. For example, in the Larger Mississippi
watershed (consisting of Upper and Lower Mississippi, Missouri, Ohio, Tennessee and10

Arkansas-Red-White watersheds – Fig. 6), AUC vary between 0.67 in winter period
and 0.78 in summer. The October 2006 flood in the 783 000 km2 Juba–Shabelle river
basin shared between Somalia and Ethiopia was used as a case study to demon-
strate the utility of the TWSA product for flood risk detection in developing countries.
The flood caused by heavy rain had devastating consequences for these countries,15

becoming the most damaging flood in Eastern Africa in 50 years. In Ethiopia, over 150
people have died and over 122 500 were displaced (DFO database); in Somalia, over
80 people have died and over 299 000 were displaced. Figure 7 shows the RFPI for the
Juba–Shabelle watershed for the months immediately preceding the flood (September,
Fig. 7a) and the month of flood (October, Fig. 7b). Notice that the October RFPI flood20

risk predictions (based on September data) are well in agreement with the actual flood
extent area (DFO database estimate). Figure 7c confirms this by demonstrating the
time series of the water storage deficit in the watershed, with the significant drop in the
available water storage capacity in the watershed in September, one month before the
disaster.25
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4 Discussion

We found that the RFPI has a good predictive skill for flood monitoring, both at a na-
tional, watershed and a sub-watershed levels, especially in large river basins located
over the flat areas such as the Mississippi river basin. Method’s skill is significantly
higher in summer period, when floods are mainly caused by heavy rainfall. During5

the cold period of the year, RFPI skill is relatively low as the method is over-sensitive
to recent precipitation, while winter floods are primarily caused by the ice jams and
snowmelt accumulated from the previous months. This additionally lowers RFPI skill
during spring months. This limitation seems, however, relatively weak in developing
countries, where floods are mainly caused by heavy rainfall events which account for10

greater damage and the most loss of life, as found through the DFO database. Modifi-
cation of the method to include snowmelt is likely to improve its skill.

A potential weakness of the approach is linked to a 2012 update of the TWSA prod-
uct. Multiple early studies demonstrated the utility of TWSA to detect the changes
in water storage over land, e.g. over the world’s major river basins (Schmidt et al.,15

2006; Yeh et al., 2006; Kim et al., 2009). In 2012, the new TWSA release 5 was dis-
tributed for immediate use to replace previous datasets (http://grace.jpl.nasa.gov/data/
monthly-mass-grids/). Accordingly, the results reported in this paper were obtained
using the updated version of the product. Test computations of flood risks using the
previous version of TWSA were performed which provided similar results; however the20

overall correspondence between the results obtained with different versions of TWSA
was not tested.

The GRACE-based RFPI is not free of limitations, e.g. associated with coarse time
and spatial resolution of GRACE data, which makes the product unsuitable for fore-
casting local high-intensity events such as flash floods. Nevertheless, it has a unique25

ability to provide an insight on water migration within a region and, in combination with
traditional methods of precipitation forecasting, increase warning time by a few weeks,
while an advanced prototype of a flood warning system like EFAS produce probabilistic
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flood alerts with lead times of up to 10 days only. The comparison of the flood potential
index against the backcast observations proves the proposed technique is valuable and
might be crucial for the developing countries that have not yet developed national flood
prediction and monitor systems. Most likely the integration of the gravitational anomaly
based products with higher-resolution remotely sensed data, such as MODIS prod-5

ucts used in the CRED flood monitoring system, will serve as a good addition to other
flood detection methods. We see the product especially useful in developing countries
with less dense hydrological monitoring networks and less advanced flood mitigation
infrastructure.
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Table 1. Schematic contingency table for categorical forecasts of a binary event. The TRP, also
called the hit rate or the probability of detection, is a relative number of times an event was
predicted when it actually occurred; the FPR, sometimes referred to as the false alarm rate
gives a relative number of times the event was predicted when it did not occur.

Observed (DFO or USGS)

yes no
Forecasted (RFPI) yes a (hit) b (false alert, Type I error)

no c (miss, Type II error) d (positive rejection)
TRP= a/(a+c) FPR= b/(b+d )
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USGS station 

Cells with less than 5 stations, 

excluded from the analysis 

Figure 1. The distribution of the USGS stream gage stations (green dotes). The blue cells
indicate those 1◦ ×1◦ grids containing less than 5 stations.
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DFO reported flood 

USGS reported flood  

(filtered data) 

FPI reported flood 

Figure 2. May 2007 with DFO reported flood, USGS reported flood (filtered data) and RFPI
reported flood (τ = 0).
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Figure 3. Sample ROC curve for the Tennessee watershed (purple). The markers represent
different RFPI thresholds. The optimal value of the classifier threshold τ for this watershed is
−0.1. The optimal threshold value must correspond to the point on the ROC curve, which is the
closest to the (0, 1) point. The random guess line (black dashed line) follows the diagonal of
the plot and has an AUC of 0.5.
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Figure 4. ROC curves for the comparison between the RFPI and the USGS- and DFO-reported
floods.
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Color Region AUC 

Ohio Region 0.71 

Arkansas-White-Red Region 0.72 

Lower Mississippi Region 0.72 

New England Region 0.73 

Missouri Region 0.73 

Upper Mississippi Region 0.74 

South Atlantic-Gulf Region 0.74 

Souris-Red-Rainy Region 0.78 

Upper Colorado Region 0.79 

Tennessee Region  0.82 

Random guess 0.5 
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Figure 5. Evaluating RFPI predictive skills in major watersheds using USGS-reported floods
(X > 0.5). (a) The ROC curves for each watershed and the corresponding RFPI AUC values.
(b) Delineation of major watersheds. Rio Grande and California watersheds (in white) were
excluded due to low number of floods. The watersheds that have RFPI AUC values less than
0.7 are in grey color (Lower Colorado, Texas-Gulf, Great Basin, Great Lakes, Mid Atlantic and
Pacific Northwest).
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Figure 6. A comparison between the RFPI and the USGS-reported floods in the Mississippi
river basin by the season.
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Figure 7. The 2006 flood in the Juba–Shabelle river basin (a) Grid cells with positive RFPI
values in September, one month before the flooding, overlapped with the DFO flood polygon.
(b) Grid cells with positive RFPI values in October, the flood month, overlapped with the DFO
flood (c). The storage deficit time series for the Juba-Shebelle watershed.
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