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Multiphase solutions that describe the modulation instability of 
spatially periodic solutions of the nonlinear SchrSdinger equation 
are constructed. 

i. Introduction 

This paper continues the investigation begun in [I] of the modulation instability of 
the solutions of the nonlinear SchrSdinger equation (NSE) 

A detailed study was made in [i] of single- and two-phase modulation perturbations of the 
simplest solution of Eq. (i.I) described by the formula 

~=e  ~+~. ( i .  2 ) 

The corresponding generalization to the arbitrary multiphase case was obtained in [2]. In 
this paper we shall consider the modulation instability of the periodic solution of the 
NSE that comes next in complexity after (1.2), namely, 

ti~ ( t+k  2~-k\ f t+k  ~ l 
, (x , t )=- - - - -kdn  (x-xo) k ' t--~ )exp~2i'-s -~-t+i~ f' (1 .3 )  

where dn(z, k) is the Jacobi elliptic function, a delta amplitude. To find explicit 
expressions describing multiphase modulation perturbation of the solution (1.3), we shall 
use the method of [2], which is based on the direct degeneracy of general theta-functional 
(finite-gap) solutions of the complexified equation (I.i). The final expressions obtained 
in such an approach* are very convenient for subsequent qualitative and asymptotic 
analysis. 

2. Description of Modulation Instability of 

the Solution (1.3) 

In our constructions, we shall take as our point of departure the well-known (see 
[4-6]) g-gap solutions of the system (complexified NSE) 

i~+u=--2w~=O, --ivt+v=--2v2u=O, 

described by the formulas 

a (x, t) =A @ (Vx+Wt+~-r )  exp {iEx+iLt}, 
O (Vx+Wt+u) 

4 ~ 0 0  (Vx+Wt+B+r) 
v (x, t) = exp{-iEx-iLt}.  

A 0 (Vx+Wt+~l) 

The parameters of the solution (2.2) are the algebraic curve r (Riemann surface) of 
genus g > 1 determined by the equation 

2gq-2 

g2=p (%) = I I  (%-E~), Ej6 C, Ed/=E~, ]=/=k, 

*There i s  an a l t e r n a t i v e  method of  i n v e s t i g a t i n g  t he  d e g e n e r a c i e s  of  f i n i t e - g a p  s o l u t i o n s  
( s ee ,  f o r  example,  [3] )  based on t h e  "degene racy"  of  t he  scheme of  f i n i t e - g a p  i n t e g r a t i o n  
itself. 

(2.1) 

(2 .2 )  
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-- g--I with number A~E\{0} and vector N--{N*}v=o 6~" The entities that occur in the expressions 

W rW l~-~ (2.2) are the Riemann theta function O(p) (p~E~), the constant vectors V----{V,}~-~0, =t ~t~=0, 
r _ f r  ! g- t  --~ ,~=o, and the constants m 0, E, and L; they are uniquely determined by F (by the 

numbers Ej) and a canonical basis, chosen arbitrarily on F, of oriented cycles a0 .... , a~_,, 
(01) 

bo,..., b~_i, with matrix of intersection indices --I 0 . Namely, we define on F the basis 

of holomorphic differentials 

o)~(~,) C')~'~-%C2~'~-%'" "+C~ d~, 
YP(~) 

normalized by the condition J" r 

ments 

a) 

b) 
corresponding to ~Noo, yN• and asymptotic behaviors 

Q2(X) = ~  ( 2 ~ + 0  (1)), ~ - ~ •  Q~(%) =ln ~+o( i ) ,  ~-~=+, 

 2(x) = - l n  

Then t he  c o n s t a n t s  ~0 and L a re  de te rmined  from the  expans ions  

~s (X) = - l n  X+ln ~0+o (t) ,  X - ~ - ,  C~z(~,)=:T=(2X2+L/2+o(t)), ~,-+oo• 

t he  0 f u n c t i o n  i s  c o n s t r u c t e d  from the  ma t r ix  

B.~ = ~ ~ (B.~=B~.) 
by 

in accordance with the formula 
g--I g--I 

O(p)--'~ Zexp{~i(Bm,  m)+ 2ni(p,m)}, (p ,m)=Zp .m . (Bin, m)= Z Bja~m. 
mEzg  ~=0 ~,v=0 

and the  v e c t o r s  V , W , r  and the  c o n s t a n t  E a re  g iven  by 
2g+2 ~+ g--i 

V~=2iC~ ~, W~=-4i(C~'C/2+C2), C= Z :  Ej, r~= ~ o~., E=C-2 Z ]  ~.~o~. 

We consider the special case of g-gap solutions determined by the conditions 

g=2N+i, N>~ I, Efi~, I=E~<E2<... <Eg+~=I/k, 0<k<L 

Eg+2=-Ei, Eg+3=-E2 ..... E2~+2=--Eg+. 

We choose the basis of cycles on F in the manner indicated in Fig. i (the continuous 
straight lines are the cuts that connect the branch points Ej to each other and to 
infinity; in the representation of the cycles paths in the upper and lower sheets 
correspond to the continuous and broken curves, respectively). 

We subject the parameters E2, E3, ..., Eg to the limiting process Ezj, E2j+~-~%~, ]=I,...~ 

N, i<~<~<... <~<I/k. Then it is obvious that E~+a+~, E~+~+~-~+~-~, ]=i,...~ N, and the 

function r is transformed into 
N 

~=~ 

(we shall assume that ~(Ez--i)(kz--i/kz)>0 when i belongs to the upper edge of the cut from 
i/k to ~ on the upper sheet). As a result, the curve F degenerates into the elliptic 
curve F0, the Riemann surface of the function ~(2~'--l)(Iz--I/k2). Proceeding as in [7], in 
which complete degeneracy (to a curve of genus zero) was obtained, we can readily show 

v=O, . . . ,  g - l ,  

and Abelian integrals ~2 and ~3 fixed by the require- 

~d~----0, ]=2,3,  ~t=O . . . . .  g - l ;  
aa 

aj  have s i n g u l a r i t i e s  on ly  a t  the  p o i n t s  ~-+ ( t h e s e  a re  the  two p o i n t s  on F 
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b o 

/ f__L ' , ,  ... \ \  

Fig. i 

that for the considered limit the infinite theta series in (2.2) are transformed into the 
f o l l o w i n g  f i n i t e  sums o f  o n e - d i m e n s i o n a l  ( e l l i p t i c )  t h e t a  f u n c t i o n s :  

m v = O , t  
v > o  

2i 2 (-i• (rn,+m~+j)-4 2 ?r 2 (~b o m,+~l.+,rn~+,)~ -is 2 r,~ (rn~- m~+,) }, 

where  

O,(p]'~) = ' 2  exp{nirno~'~+2niraop} 

is the third Jacobi theta function [8], 
i I l k  

T - - - ~  K~-- = 
K ' ~ (~-X' )  (~-k~X ') i ( ~ - ~ )  ( I - ~ ' ~ ' )  

l ib  

~ = k  5 - - •  &,  ]>l, • = ~ = - ' f ~ -  ~ (~-~,) ~ (~-~)  ( i -~ '~ ~) - ~ ~A, - { f  ~m4, 

' ,: ( z + ~ j )  V ( z ~ - I )  ( t - k 2 z  ~) 

i 

_ ( ~ - ~ )  ~ ( i - ~ )  ( i -k2~  i) ' 

r162 i l h  

r~~ ~ - •  d~, ~0J = i ! d~ 
,,~ (~-~) ~ (~-1)  (X~-t/k9 ~ . r (~,-t)  ( t -k '~  ~) 

Thus ,  we have  o b t a i n e d  a s o l u t i o n  o f  t h e  s y s t e m  ( 2 . 1 )  d e s c r i b e d  e x c l u s i v e l y  in  t e rms  
of the theory of elliptic functions: 

u n  (x, t) ~ A 0~ (x, t) -2~ ~+~ t - -  k 2 ~+~ @o(X,t) e ~" v N ( x , t ) =  I O_ l ( x , t )  e2i ~ 
' Ak2 @o (x, t) " 

This solution is parametrized by the N real numbers Xj, the (2N + i) complex numbers 
0 and the complex number A, and it describes the interaction of 2N solitons of the I]0, ~]9, ~i+N, 

sy s t e m ( 2 . 1 )  on t h e  backg round  o f  i t s  s i n g l e - g a p  p e r i o d i c  s o l u t i o n .  In  p a r t i c u l a r ,  
t h e r e f o r e ,  t h e  f u n c t i o n s  u N and v N a r e  n o t  a l m o s t  p e r i o d i c  w i t h  r e s p e c t  t o  t h e  v a r i a b l e  x.  
However ,  t h e y  do become such  i f  t h e  s u b s t i t u t i o n  x + i x  i s  made. We show t h a t ,  s i m u l t a n e  * 
o u s l y ,  i t  i s  p o s s i b l e  t o  a r r a n g e  t h e  p a r a m e t e r s  ~0, q~, and A in  such  a way t h a t  

~ ( i ~ ,  t )=v~( i x ,  t) ,  x, t ~ ,  ( 2 . 3 )  
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i.e., the function ~N(X, t) = uN(ix, t) satisfies our NSE 

~r162162 

Noting that ~ and Toj are purely imaginary and ~, ~+~.z, x~, ?~, 

mv=O,t 
v>O 

2i E• ~ ,,t(rn~-m~+,)+2 E(Tl~~ Er,~162 }. 

and ~o are real, we obtain 

Making the substitution mj~l--m~-~,m~+~t-m~ and taking into account the equation 
T~+J,I =TN+I,j 

we can transform this expression for O~ to 

j v>0 v>~>0 

m~=O,i j 

e x p  { 2 E 1",1 (m~Yrt/-~r~v+jm~v+ z ) + 2  E Tlv+~,/?zt~v§ 
$>1 $,1 

i8 

where (again using (2.4)) 

N-! 

J 

j > l  j,r 

N--I N N--I N 

1=1 ~= t-1-1 / :1  j=/+t  

N j-i 

l =iq-i ~ 1 } 

j-i N 

l=l  l=j+I r 

IRe 'Oj ~ + Re ~+~---- - '~.  

We impose on the parameters q and q$ the conditions 

I2  ~ Im l l o = i  "~oj, Im ~b ~ -~ Im ~l~r+~, 
J 

T h e n  f r o m  ( 2 . 5 )  we h a v e  

j v>0 9>~>0 

(2.4) 

(2.5) 
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or 
O, (,z, t) o_, (~ ,  t) 
Oo (~, t) o0 (~z, t) 

To satisfy Eq. (2.3), it is now sufficient to require IAl=~l-k*/k. 

We summarize. We have shown that for an arbitrary set of {~}, {x0~}, {t0~}, x0 , and ~ such 
that I<~<~.~< �9 �9 �9 <~<I/k, xo, xo~, to~, ~, 0<k<l, N~N, we can~ using the formulas 

l-bk ~ . _ .  

,~ (x, t) = --s O, (x., t) ' 

2 k K  
m v ~ O , i  ~ 

2 

~ , ? ~ ( t - t o , ) ( m T m ~ + ~ ) 7 ~ ( m ~ + m ~ + ~ ) + i s E r ~ ~  8---1,0, ( 2 . 6 )  

obtain a solution of the NSE 

i*,+~+21 ~ I~,=0. ( 2.7 ) 

Remark I. The parameters {x0j}, {t0~},x0 and ~ are related to the original parameters 
n0, D$, and A by 

X0 
2k--K= V2- Re N0, x0~=_im N0/us, Re Nj~162 ~=-argA. 

The solution ~N(X, t) is an almost-periodic function of the variable x with group of 
real periods:To=2kK, T~=~/ur .... , N. Note also that ~N(X, t) is a smooth function of the 
variables x, t6~. This property is due to the sign of the nonlinearity in Eq. (2.7). 

Now suppose that 

max?~<2min ?~--=270 (2.8) 

and let us study the t + • behavior of the solution ~N(X, t) to accuracy O(e-S~~ 

If t § --~, then the corresponding leading terms in the sums 9s correspond to vectors 
m with coordinates 

rn,=m~=... =m~=l, m~+,---m~+~---- ... --m,~=0, 

m~=0, m2=m~=. �9 =m~-=l, mx+~=rn~+2=.. ~ =m2N=0, 

7n,=m~=. . .=m~=m~+~,=t~  m ~ + , = . . . = m ~ = O ,  

mj--O, 

t f g t ~  

�9 ~ . . o . . ~ ~ . ~ �9 o . o 

r n ~ = . . .  = m ~ _ ~ = r a j + i = . . .  = r n N = t ,  rn~v+~= . . .  =rn,~=O, 

�9 �9 �9 - - - - - ? f t . , v ~ N ' / , N + j - - - - - t ~  m . , - v + l :  . . .  ~ m ~ + j - l ~ m . ~ + j + t  ~ �9 �9 . 

. . .  ----re,N----O, 

raN----0, ml---- ... ----rn~_,=0, rn~+i----... -----m2N----O, 

?nl ~ ... ~m~---/752~I, mN+i~... ~21r 

Therefore, in the limit t § --~ we obtain for @s 

J J J 

i8 ~ "~ ' : " ' : : i~ ~ X--Xo 

j j > i  
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N 

2 [  ~ + 

o X--Xo I--8 

exp {8~+ 2i• (X-Xo~) +4~ ( t-to~) - i e r  ] + O ( e~~ } , 

~--1 N 

( 2 . 9 )  

Similar calculations for the case t § +~ lead to expressions that differ from (2.9) by 
replacement of yj by --yj and r ~ by --r~. Hence, recalling the definition of the elliptic 

function dn [8], we can write 2own the"following asymptotic representation for the 
solution ~N(X, t) in the limit t § _+~: 

., l + k . / ,  , t + k 21/'~t ' \ e ~ i ~ , + ~ +  Xo -r-, ] x 

N 

{I+ ,~../e~-~ "+4vj( t - to ' )  L~lj --+-2i~'(x-x~ - ~  a21:l=e zixi(x-x~ -4- O (e-svdtl)} , 

where 

~• ~ Z:r~ ~ 

[ o,(X- o 
e~ , " 2~K +(-t)~xo'['~/2 )e:~f - _ 2kK 

(%~ 2 - ~ K I ~  I x - x o  I "d2 ) 

(2.10) 

e = l ,  2. 

Thus, the constructed solution ~N describes an exponentially small (in the limit It! § ~) 
multiphase modulation of the simplest x-periodic solution of the NSE. It is interesting 
that the corresponding modulation instability reduces merely to a finite change of the 
time phase ~: 

A~=~+-~-=-2 Z ~ 0" 

The phase x 0 of the spatial variable is unchanged. 

Remark 2. The leading term, of order 0(i), in the asymptotic expression (2.10) is 
also valid when the condition (2.8) is lifted. 

Remark 3. For the modulus of the solution ~N(X, t) there exists an alternative to the 
representation given by (2.6): 

i 

= ~ in O0 (x, t) +C, C = -- -- + .-- 
K 

Remark 4. By means of the variable 

u = ~  d~, 
~, Y ( ~ - ~ )  ( l - k ~  ~) 

, ~=sn(u,k), 

which uniformizes the curve r0, we can go over in the solution ~N(X, t) from the parametri- 
zation by the numbers {%j} to parametrization by the numbers {uj}: 

0 < u l < u 2 <  . . .  <u~<K' ,  ~j=sn (i tb+K , k). 

The e x p r e s s i o n s  f o r  ~0~, ~ ,  x~+~,~, r~ ~ ~ ,  and • in  t e rms  of  t h e  new p a r a m e t e r s  {uj} a r e :  
i 

Ol ( ~ - ( a , + u , )  ] z/Z) 
= niz + ~ (uz+uj)-- In j>l ,  

i Tos='~/2--(i/2K)tt~, ~ 2 2K O / _ ~ ( a j _ a z ) ] ~ / 2  ) 
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"cN+j,z = + (ai +a j ) -  In  
2 2 K  

- i  sn  (itt~, k)  
rj ~ = a rc tg-  t + d n  (ia~, k) (mod  2~) ,  

t - k  2 sn  (/a~, k)  

k cn (ia~, k)  dn (iaj, k) 

i ~ / 2 )  ' 0 
r 

t - k  ' . s n ( ~ ,  k)  

- - ,  . f ? ~ =  k ~ dn ~ ( ia j ,k  ' 

i 
- -  I I  (K, ia~+K+iK'), 
Kk 

where H(K, a) is the complete elliptic integral of the third kind [8]: 

11 (a,  a)  = ~ k2 sn  a cn a dn a s n  2 a 
t - - k  2 sn  z a s n  2 a �9 du---- 

o 

l 
- - l n -  

2 
FaZ(a),  Z ( u ) = ~ a l n 0 o ( 2 ~ - l ~  ) .  

Remark 5. In the phase space,* the image of the solution ~N(X, t) is a heteroclinic 
trajectory doubly asymptotic to two cycles - the images of the solutions ~(x, t) (1.3) 
differing by the phase shift A@. By the methods of this paper one can also obtain more 
complicated solutions that are doubly asymptotic to a torus, i.e., to a solution of the 
NSE that is an almost-periodic function of the variable x with two real periods. For 
this, it is necessary to construct in the general finite-gap expressions (2.2) a limit 
analogous to the one considered in this paper but corresponding to degeneracy of the 
curves F, not to the elliptic curve Fo, but to the hyperelliptic curve of genus 3 des- 
cribed by the equation 

y~= ( ~  (~2+~-2) %2+ i) (~--  (~2 + ~-~) Z2+ I ). ( 2.11 ) 

As is shown in [ii], the finite-gap solution of the NSE constructed from this curve 
can be expressed in terms of one-dimensional Jacobi theta functions and a function almost 
periodic with respect to x with two real periods. We intend to discuss the details of 
the corresponding limiting process and the expressions that describe the modulation 
instability of the solution corresponding to the curve (2.11) in a following publication. 
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