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Abstract

In this paper we discuss a comparative analysis of the maximum likelihood (ML) and
Bayesian parameter estimates of the generalised extreme value (GEV) distribution.
We use a Markov Chain Monte Carlo (MCMC) Bayesian method to estimate the pa-
rameters of the GEV distribution in order to estimate extreme flood heights and their5

return periods in the lower Limpopo River basin of Mozambique. The return periods
of extreme flood heights based on the Bayesian approach show an improvement over
the frequentist approach based on the maximum likelihood estimation (MLE) method.
However, both approaches indicate that the 13 m extreme flood height that occurred at
Chokwe in the year 2000 due to cyclone Eline and Gloria had a return period in excess10

of 200 years, which implies that this event has a very small likelihood of being equalled
or exceeded at least once in 200 years.

1 Introduction

Floods have increasingly become a common natural disaster in Southern Africa.
Mozambique is one of the most affected countries in the region mainly due to its15

geographical position with nine transboundary rivers (Mabaso and Manyena, 2013;
Spaliviero et al., 2014). Among the transboundary rivers in Mozambique, Zambezi
River is the largest river in the territory followed by Limpopo River which is the second
largest African river that drains to the Indian Ocean. Unlike the Zambezi River which
is characterised by very large dams such as Kariba and Cohora Bassa, the Limpopo20

River has no large dams implying that the flow is not regulated. The hydrology of the
Limpopo River basin is characterised by one cycle of rainfall that extends from October
of the previous year to April of the following year with peak monthly totals in February,
while the dry season runs from May to September (World Meteorological Organiza-
tion [WMO], 2012). The Limpopo River is well pronounced by extreme natural hazards;25
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alternating between extreme floods and severe droughts (WMO, 2012; Spaliviero et al.,
2014).

In this paper we address extreme floods in the lower Limpopo River basin of Mozam-
bique. The Limpopo River separates South Africa from Botswana and Zimbabwe, and
then flows eastwards through Mozambique to the Indian Ocean. Its catchment area5

distribution among Botswana, Mozambique, South Africa and Zimbabwe is 20, 20, 45
and 15 % respectively, with most of the catchment lying under semi-arid conditions
(WMO, 2012; South Africa Limpopo, 2013; Spaliviero et al., 2014).

Gohil and Chowdhary (2013) define flood as a rare high event of a river usually as
a result of extremely high rainfall triggered by unusual meteorological conditions. The10

Limpopo River basin in Mozambique experienced a series of disastrous floods over
the past two decades; the most catastrophic and expensive of these floods were the
year 2000 floods which killed more than 700 people, drowned more than 20 000 cattle
and caused economic damages estimated at USD 500 million (Mabaso and Manyena,
2013; Maposa et al., 2013; Mondlane et al., 2013). In just over a decade after the15

disastrous floods of the year 2000, extreme floods revisited the Limpopo River basin
in 2013 in the Chokwe district of Mozambique completely flooding the town of Chokwe
including the General Hospital and other major facilities, and forcing two women to give
birth on rooftops (Jackson, 2013; Maposa et al., 2013; Musiya, 2013). These events
pose serious problems to the engineering structure by destroying bridges, roads and20

other major infrastructure in the towns and cities along the floodplains of the Limpopo
River basin, and also cause major problems to the insurance sector and developed
nations that help fund these insurance programmes. Maposa et al. (2013) reports that
aid money can buy four times as much humanitarian impact if used before a disaster
rather than on post disaster relief operations. Each year a disaster occurs, a substantial25

amount of money that has been originally designated for development in Mozambique
gets diverted to relief and rehabilitation assistance.

The motivation for studying these extreme floods in the Limpopo River basin is to
reduce the associated risk and mitigate the deleterious impacts of these floods on
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humans and property. Several authors have provided results that portend that the fre-
quency, magnitude and intensity of extreme weather events such as floods and temper-
ature are on the rise (Mabaso and Manyena, 2013; Mondlane et al., 2013; WMO, 2013;
Spaliviero et al., 2014). According to a unique survey of 139 National Meteorological
and Hydrological Services carried out by WMO (2013) floods were the most frequently5

experienced extreme events over the course of the decade 2001–2010 worldwide in-
cluding Africa. Munich Re (2013) affirms that natural catastrophic statistics for the year
2013 was dominated by floods that caused billions of American dollars in losses.

The Limpopo River basin has recently attracted researchers from various fields
of specialisation ranging from academics to non-governmental organisations. Asante10

et al. (2007) studied and developed flood monitoring system from remotely sensed
data for the Limpopo River basin in Mozambique. WMO (2012) proposes to improve
the flood forecasting and early warning systems in the basin. Mujere (2011) argues
that despite the accurate short term flood forecasts provided by meteorological fore-
casts, the shortage of time allowed for disaster preparedness and the incidence of false15

alarms lead people not to take the short term forecasts seriously. These short comings
in flood forecasting justify the need to use statistical methods. Mabaso and Manyena
(2013) advocate for contingency planning in Southern Africa to be considered as an
event rather than a process in disaster preparedness and response planning in an effort
to reduce disaster risk. Most recently Spaliviero et al. (2014) give a detailed account of20

flood risk analysis in the Limpopo River basin from a geosciences point of view based
on the river’s past evolution and geomorphological characteristics.

Mondlane et al. (2013) perform a comparative analysis of extreme flood frequency
distribution models based on 20 years rainfall data recorded at Xai-Xai precipitation
station in lower Limpopo River basin using the Gumbel, Fréchet, Pareto and Weibull25

distributions. The histogram of the collected data in Mondlane et al. (2013) showed
a multi-modal distribution and the Gumbel Max distribution appeared to approximate its
skewness better compared to other distributions in the paper while the two-parameter
Weibull and Gumbel Min fitted the negatively skewed and unimodal distribution of the
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randomly simulated data. In a paper presented at the Extreme Value Analysis (2013)
conference, Maposa et al. (2013) compare ten candidate distributions for their good-
ness of fit at Chokwe and Sicacate hydrometric stations based on over 50 years of
annual daily maximum river flows (flood heights) using the generalised extreme value
(GEV), generalised gamma (GG), Gumbel, two-parameter gamma (Gamma 2P), three-5

parameter gamma (Gamma 3P), two-parameter lognormal (LN2), three-parameter log-
normal (LN3), log-Pearson type 3 (LP3), two-parameter Weibull and three-parameter
Weibull distributions. Maposa et al. (2013) conclude that the GEV is more consistent
at the two sites, with Gamma 3P, Gumbel Min and LN3 providing alternative models
for the basin. Smithers (2012) details a comprehensive literature of advances that have10

been made to model extreme floods. However, Smithers (2012) stresses that the de-
mand for reliable and improved estimates of flood frequency in terms of flood peaks
and return periods have not been met and still poses a challenge in hydrology despite
the improved understanding of the fundamental hydrological processes.

The purpose of this paper is to perform a comparative analysis of maximum likelihood15

and Bayesian estimates of the GEV distribution. We use Markov Chain Monte Carlo
(MCMC) Bayesian inference to improve on the results achieved through fitting a GEV
distribution with parameters estimated by the maximum likelihood estimation (MLE)
method. Gaioni et al. (2010) allude that the GEV distribution arises naturally when
modelling the maxima over a sequence of observations. Recently Ferreira and de Haan20

(2013) demonstrate conditions under which the block maxima method may prevail over
the peaks-over-threshold method and derive the theoretical proofs based on proba-
bility weighted moment (PMW) estimators. Ferreira and de Haan (2013, p. 1) define
block maxima approach in extreme value theory (EVT) as a method that “consists of
dividing the observation period into non-overlapping periods of equal size and restricts25

attention to the maximum observation in each period”. In hydrology a block is usually
a year and the probability distribution of the new observations formed is assumed to
approximately follow an extreme value distribution under extreme value conditions. In
peaks-over-threshold approach observations that exceed a certain predetermined high
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threshold are selected and the probability distribution of the selected observations of
excesses over a pre-determined threshold is assumed to approximately follow a gen-
eralised Pareto distribution (GPD). The present paper concentrates on block maxima.

The MLE method is one of the most commonly used methods for estimating param-
eters when working with block maxima (Dombry, 2013; Ferreira and de Haan, 2013).5

The consistency of maximum likelihood estimators has recently been proved (Dombry,
2013). The present paper uses MLE and Bayesian methods to estimate the parame-
ters of the GEV distribution. Gaioni et al. (2010) propose a model based Bayesian ap-
proach for direct quantile elicitation which translates into prior distribution assessment.
Gaioni et al. (2010) argue that although the proposed approach is quite general, it is10

deemed particularly useful in river data cases in which direct assessments on the prior
distribution are extremely difficult. Most recently Vidal (2014) emphasises the novelty
of model based Bayesian inference approach when he used Bayesian analysis of the
Gumbel distribution to analyse extreme rainfall data in Chile. Vidal (2014) leaves the
use of GEV distribution in Bayesian analysis to further research. This provides some15

evidence that the application of this method in hydrology is still relatively new and thus
supports its application in least developed countries such as Mozambique. In this study
we propose to use the GEV distribution as the likelihood function and estimate the pa-
rameters using the MLE method and Bayesian parameter estimation method in order
to use the prior to develop the predictive distribution which provides the basis for future20

expectations regarding the behaviour of the lower Limpopo River. The advantages of
using Bayesian models are explained in Gaioni et al. (2010), and for further reading
on Bayesian inference models we refer the reader to Beirlant et al. (2004) and Reiss
and Thomas (2007). Some of the advantages of using Bayesian parameter estima-
tion methods are the use of prior knowledge and that the modeller is able to capture25

uncertainty of the parameter estimates.
The rest of the paper is such that Sect. 2 explains the data and gives the theoretical

framework of the statistical models used in the paper, Sect. 3 presents and discusses
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the results, Sect. 4 outlines the contributions of this paper to disaster risk reduction,
and Sect. 5 gives the concluding remarks.

2 Materials and methods

In this section we present the data; probability framework of block maxima and the
theoretical models applied later in this paper.5

2.1 The data

The data used in this study were obtained from the Mozambique National Directorate
of Water, which is the authority responsible for water management in Mozambique
under the Ministry of Public Works. The data are hydrometric and measured in metres.
Annual daily maximum flood heights recorded at Chokwe hydrometric station over the10

period 1951–2010 were used for this study. The block maxima approach was achieved
by taking sequential steps to select the highest peak flood height in each hydrological
block or year (Dombry, 2013; Ferreira and de Haan, 2013).

2.2 Probability framework of block maxima

Recent advances in block maxima are derived in Ferreira and de Haan (2013) and15

Dombry (2013). In hydrology it is natural that the observations are blocked by years, in
particular, if the sample size is large enough.

The probability framework of block maxima is derived as follows:

Let Xi = (X1,X2, . . . ,Xn)
i id rv∼ F , each Xi representing the annual instantaneous daily

observed flood heights (water levels).20

Now let Mn = max(X1,X2, . . . ,Xn), then P (Mn ≤ x) = P (X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x) =
P (X1 ≤ x)×P (X2 ≤ x)× . . .×P (Xn ≤ x) = F n(x), but F is unknown, so we approximate
F n by limit distributions as n→∞ (see proof in Ferreira and de Haan, 2013, p. 3). The
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distribution of F is assumed to be in the domain of attraction of some extreme value
distribution (Fisher and Tippett, 1928; Dombry, 2013; Ferreira and de Haan, 2013):

Gξ(x) = exp(−(1+ ξx)−1/ξ),ξ ∈ <,1+ ξx > 0, (1)

where ξ is the extreme value index. The closest approximation of the extreme value5

distribution of F is the GEV distribution.

2.3 The GEV distribution model

The GEV cumulative distribution function, G, is given as:

G(x) =

 exp
(
−
(
1+ ξ x−µ

σ

)−1/ξ
)

, 1+ ξ x−µ
σ > 0, ξ 6= 0,

exp
(
−exp

(
−x−µ

σ

))
, x ∈ <, ξ = 0,

(2)

10

where µ,σ and ξ are the location, scale and shape parameters, respectively, and are
estimated in this paper by MLE and MCMC Bayesian method (Gaioni et al., 2010; Dom-
bry, 2013; Ferreira and de Haan, 2013; Vidal, 2014). In Eq. (2), we have the heavy-
tailed Fréchet class of distributions if ξ > 0, the short-tailed Weibull class of distribu-
tions if ξ < 0, and the light-tailed Gumbel class of distributions if ξ = 0. The short-tailed15

Weibull class of distributions is bounded above by µ− σ
ξ .

The estimates of extreme quantiles of the GEV are obtained from:

Xp = G−1(x) =

{
µ+ σ

ξ

[
(− ln(1−pi ))

−ξ −1
]

, ξ 6= 0,

µ−σ ln (− ln(1−pi )) , ξ = 0,
(3)

where p = P (X > x) = 1−G(x) is the probability of exceedance. In Eq. (3) as p→ 020

and ξ < 0, we get Xp = µ− σ
ξ .
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2.4 Bayesian flood frequency model

The Bayesian estimation of a parameter vector θ = (µ,σ,ξ), in this paper, is given as:

f (θ i |x) =
f (θ i )f (x|θ i )

f (x)
=

f (θ i )f (x|θ i )∑
j f (θ j )f (x|θ j )

, for a discrete parameter vector θ , and

f (θ |x) =
f (θ )f (x|θ )

f (x)
=

f (θ )f (x|θ )∫
f (θ )f (x|θ )dθ

, for a continuous parameter vector θ , (4)
5

where f (θ ), f (θ |x), f (x|θ ) and f (x) is prior, posterior, likelihood and normalisation con-
stant, respectively. It can be said that the posterior is proportional to the prior times the
likelihood. In other words the posterior information is the combined sum of the prior
and sample information (Beirlant et al., 2004; Reiss and Thomas, 2007; Vidal, 2014).
Bayesian methods have the objective of computing the posterior distribution of the de-10

sired variables, in our case, the parameters of the annual daily maximum flood height
distribution. Equation (4) can also be written in the form (Kwon et al., 2008):

P (θ |x) =
P (θ )× P (x|θ )

P (x)
=

P (θ )× P (x|θ )∫
Φ
P (θ )× P (x|θ )dθ

∝ P (θ )× P (x|θ ), (5)

where θ is vector of the parameters of the distribution to be fitted (in this case GEV15

distribution), P (θ |x) is the posterior distribution, x is the vector of observations, Φ is
the space parameter, P (θ ) is the prior distribution, and P (x|θ ) is the likelihood function.
The 100(1−α)% Bayesian credible set C (or in particular credible interval) is a subset
of the space parameter Φ such that:

∫
C
P (θ |x)dθ = 1−α, where the sum replaces the

integral if the space parameter Φ is discrete. The quantile-based credible intervals are20

such that if θ ∗
L is the α/2 posterior quantile for θ , and θ

∗
U is the 1−α/2 posterior

quantile for θ , then
(
θ

∗
L,θ ∗

U

)
is the 100(1−α)% credible interval for θ . In this paper R

programming package is used to produce these quantiles and to plot the return level
of the posterior distribution.
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3 Results and discussion

In this section we present, interpret and discuss the results of our analysis. All the
results in this section were obtained using R statistical programming package and R
Studio (R Core Team, 2013). Excel software was used to produce the time series plot
of annual daily maximum flood heights at Chokwe hydrometric station.5

3.1 Time series plot of the data

The results in Fig. 1 show that the highest peak flood height of magnitude 13 m oc-
curred in the year 2000. In general, however, the time series plot of annual daily maxi-
mum flood heights does not indicate an upward trend of floods. In fact the flood heights
at Chokwe hydrometric station for the period 1951–2010 are considerably random as10

indicated by the trend line R2 of 0.26 % in Fig. 1.

3.2 Maximum likelihood estimation (MLE) approach model results

The GEV distribution was fitted using the R package Ismev (Heffernan and Stephen-
son, 2012). The parameters of the GEV distribution were estimated by the MLE
method. The results obtained are presented in Table 1 and Fig. 3. Figure 2 presents re-15

sults for the empirical distribution of the annual daily maximum flood heights at Chokwe
hydrometric station. The boxplot, density plot and other plots in Fig. 2 show that the dis-
tribution of annual daily maximum flood heights at Chokwe is positively skewed and the
13 m flood height is an outlier. Table 1 presents the MLE estimates of the GEV param-
eters, the associated standard errors and the associated 95 % confidence intervals of20

the parameters µ,σ and ξ. The confidence interval for the population mean, µ, reveals
that we can be 95 % certain that the true population mean of annual daily maximum
flood heights at Chokwe lies between 3.76 m and 4.77 m high. The diagnostic plots in
Fig. 3 indicate that the GEV model is a good fit as indicated by the probability plot and
the probability density plot. The probability plot shows that the points are very close25
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to the reference line (line best fit) and the probability density plot shows that the GEV
mimics the shape of the empirical distribution represented by the histogram in Fig. 3.
Both the return levels plot in Fig. 3 and results in Table 3 reveal that the 13 m flood
height of the year 2000 has a return period in excess of 500 years based on the MLE
method, implying that it was a very rare event.5

Since ξ < 0, we can use the short-tailed Weibull class of distributions to model the
annual daily maximum flood heights at Chokwe hydrometric station. The upper bound
of the annual daily maximum flood heights at Chokwe based on the MLE parameters
in Table 1 is Xp = µ− σ

ξ = 4.26452− 1.78893
−0.08351 = 25.69m. This reveals that the 13 m flood

height that occurred at Chokwe hydrometric station in the year 2000 is about half the10

upper bound annual daily maximum flood height expected at the site, although the 13 m
flood height is way higher than rest of the flood heights for the period 1951–2010 as
shown by the boxplot in Fig. 2. Results in Table 3 show that the 100 year flood height at
Chokwe based on MLE approach is estimated to be 11.10 m. Any flood height above
the 100 year flood level is considered to be very extreme (Coles, 2001; Beirlant et al.,15

2004; Reiss and Thomas, 2007).

3.3 Bayesian approach model results

The MLE estimates of the GEV parameters µ,σ and ξ were then used to run the
Markov Chain Monte Carlo (MCMC) simulations to produce the traces and marginal
posterior densities shown in Fig. 4. The trace plots in Fig. 4 show fast convergence20

and the results of the marginal posterior densities show that it is highly unlikely that the
posterior estimate of µ will be below 3.5 m and highly unlikely that it will be above 5.0 m.
Table 2 presents results for the Bayesian posterior parameter estimates of the GEV
distribution, the associated naïve standard errors and the associated 95 % credible
intervals of the parameters µ,σ and ξ. Credible intervals are the Bayesian analogue of25

confidence intervals. However, the interpretation differs and Gaioni et al. (2010) argues
that one of the main advantages of Bayesian methods compared to frequentist methods
is that credible intervals give more assurance than confidence intervals. For instance,
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a 95 % credible interval for µ from Table 2 is interpreted as: the true population mean
of the annual daily maximum flood heights at Chokwe lies between 3.76 m and 4.78 m
with probability 0.95. It can also be noted that in this study the 95 % credible intervals
for all the three parameters µ,σ and ξ in Table 2 are wider than the 95 % confidence
intervals for the same parameters in Table 1, and all the upper limits of the 95 % credible5

intervals are greater than the corresponding upper limits for 95 % confidence intervals.
These differences indicate that the Bayesian approach gives higher quantile estimates
in the upper tail than the MLE frequentist approach as presented in Table 3. Modelling
the upper tail is very important in flood frequency analysis as it results in reducing the
impact of a flood event through reliable forecasting and disaster preparedness.10

The return levels of the posterior distribution in Fig. 5 and results in Table 3 re-
veal that the 13 m annual daily maximum flood height event of the year 2000 caused
by cyclone Eline and cyclone Gloria has a return period in excess of 200 years. The
95 % credible intervals in Fig. 5 gives a confirmation of our earlier discussion that the
Bayesian approach gives higher quantile estimates in the upper tails than the frequen-15

tist approach shown in Fig. 3. Both the 95 % credible intervals in Table 2 and the 95 %
confidence intervals in Table 1 for ξ change sign from negative to positive revealing the
existence of all the three families of distributions encompassed in the GEV distribution.
This means that using, for example, the Weibull distribution alone will not model all the
characteristics of the distribution of annual daily maximum flood heights at the site.20

Again since ξ < 0, the upper bound of the annual daily maximum flood heights at
Chokwe hydrometric station based on the Bayesian approach parameter estimates
in Table 2 is Xp = µ− σ

ξ = 4.27235− 1.90141
−0.06824 = 32.14m. The upper bound based on

Bayesian approach is about two-and-half times the 13 m flood height of the year 2000.
The results in Table 3 show that the 100 year flood height based on Bayesian parame-25

ter estimation approach is 11.78 m which implies that the 13 m flood height of the year
2000 was indeed an extreme event (see boxplot in Fig. 2) despite the fact that it is
almost one-third lower than the expected upper bound at the site based on Bayesian
approach. Table 3 also reveals that the 13 m flood height has a return period in excess
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of 200 years based on Bayesian approach which is a shorter return period compared to
the MLE method that is in excess of 500 years for the same flood height. The Bayesian
estimates of annual daily maximum flood heights and their associated return periods
(see Table 3) in this paper seem to be closer to reality as compared to the MLE ap-
proach. This coincides with the findings by Reis and Stedinger (2005).5

4 Added value for the post 2015 framework for disaster risk Reduction

The work in this paper supports the implementation of the Hyogo Framework for Ac-
tion (World Conference on Disaster Reduction, 2005) through addressing the gaps and
challenges in reducing underlying risk factors; risk identification, monitoring and early
warning; and preparedness for effective response and recovery. Accurate forecasts of10

the return periods of extreme floods can be used to reduce uncertainties associated
with these natural hazards, thereby reducing the underlying risk factors and enabling
people to better prepare for and respond to these rare events. Mozambique is one of
the developing (or least developed) flood-prone countries in Southern Africa and there-
fore warrants particular attention because of its vulnerability and risk levels which far15

exceed its capacity to respond to and recover from flood disasters (World Conference
on Disaster Reduction, 2005). Knowledge of the distribution of maximum flood heights
helps in substantial reduction of flood disaster-related losses in lives, in the social,
economic and environmental assets of Mozambique.

The work in this paper also contributes in the sharing of research findings, lessons20

learned and best practices which are some of the aspects needed to enhance interna-
tional and regional cooperation and assistance in disaster risk reduction.

Disaster Risk Management in the Post 2015 Framework for Disaster Risk Reduction
should continue to focus on knowledge sharing, international and regional cooperation
and assistance in disaster risk reduction. The search for improved and reliable statis-25

tical techniques in long-term flood frequency forecasting should be considered as an
ongoing process in disaster risk reduction.
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5 Conclusions

In this paper we have considered the block maxima approach of extreme value theory,
also known as at-site approach. The frequentist approach considered fitting the gen-
eralised extreme value distribution using the maximum likelihood estimation method.
The choice of the GEV distribution over other alternative distributions for the lower5

Limpopo River at Chokwe hydrometric station was inspired by previous studies done
by the authors at the same station and other stations in the lower Limpopo River basin.
Diagnostic tests showed consistency of the goodness of fit of the GEV distribution at
the site. The importance of the GEV distribution in modelling the lower Limpopo River
annual daily maximum flood heights was revealed in this study through the use both10

credible and confidence intervals.
In an attempt to improve on the results achieved using the frequentist approach,

a model based Markov Chain Monte Carlo Bayesian (MCMC) approach was applied to
the data. The maximum likelihood estimates of parameters of the GEV distribution were
used to develop the MCMC simulations in order to develop Bayesian posterior distribu-15

tion estimates of the parameters of the GEV distribution. This study has revealed that
Bayesian approach estimates of the return periods are shorter than those of the MLE
approach. For instance, the 13 m flood height of the year 2000 has a return period in
excess of 200 years based on Bayesian approach and in excess of 500 years based on
the MLE approach. The study has also revealed that for a particular return period (or20

high quantile), Bayesian approach offers higher flood height estimates as compared
to MLE approach when the GEV distribution is fitted to the Limpopo River data. Our
findings suggest that the Bayesian approach improves on results achieved through the
frequentist approach when using the GEV distribution as the likelihood function.
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Table 1. Maximum likelihood parameter estimates of the GEV distribution.

Parameter Estimate Standard error (SE) 95 % *CI

µ 4.26452 0.25374 (3.7570, 4.7723)
σ 1.78893 0.17725 (1.4343, 2.1436)
ξ −0.08351 0.07273 (−0.2290, 0.0620)

*CI means Confidence Interval.
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Table 2. Bayesian posterior parameter estimates of the GEV distribution.

Posterior parameter Estimate Naive SE 95 % *CI

µ 4.27235 0.00602 (3.7636, 4.7872)
σ 1.90141 0.00484 (1.5565, 2.4002)
ξ −0.06824 0.00184 (−0.2027, 0.1046)

*CI means Credible Interval.
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Table 3. In-sample evaluation of estimated tail quantiles at different probabilities.

Quantiles Exceedance Return period ML estimate Bayesian estimate
probability (p) (Exceedances)* (Exceedances)*

95th 0.05 20 years 8.97 m (1) 9.38 m (1)
98th 0.02 50 years 10.22 m (1) 10.79 m (1)
99th 0.01 100 years 11.10 m (1) 11.78 m (1)
99.5th 0.005 200 years 11.92 m (1) 12.72 m (1)
99.6th 0.004 250 years 12.18 m (1) 13.02 m (0)
99.8th 0.002 500 years 12.94 m (1) 13.90 m (0)
99.9th 0.001 1000 years 13.65 m (0) 14.74 m (0)
99.99th 0.0001 10 000 years 15.76 m (0) 17.27 m (0)

(Exceedances)* refer to the number of sample observations above the estimated quantile (flood) level.
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Table 3: In-sample evaluation of estimated tail quantiles at different probabilities 1 

Quantiles Exceedance 

probability 

(p) 

Return period ML estimate 

(Exceedances)* 

Bayesian 

estimate 

(Exceedances)* 

95
th

  0.05 20 years 8.97 m (1) 9.38 m (1) 

98
th

  0.02 50 years 10.22 m (1) 10.79 m (1) 

99
th

  0.01 100 years 11.10 m (1) 11.78 m (1) 

99.5
th

  

99.6
th

  

0.005 

0.004 

200 years 

250 years 

11.92 m (1) 

12.18 m (1) 

12.72 m (1) 

13.02 m (0) 

99.8
th

  0.002 500 years 12.94 m (1) 13.90 m (0) 

99.9
th

  0.001 1000 years 13.65 m (0) 14.74 m (0) 

99.99
th

  0.0001 10 000 years 15.76 m (0) 17.27 m (0) 

*Exceedances in brackets refer to the number of sample observations above the estimated 2 

quantile (flood) level. 3 
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Figure 1: Time series plot of annual daily maximum flood heights at Chokwe hydrometric 6 

station, 1951-2010 7 

Figure 1. Time series plot of annual daily maximum flood heights at Chokwe hydrometric sta-
tion, 1951–2010.
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 1 

Figure 2: Plots of the empirical distribution the annual daily maximum flood heights 2 

(ADMFH) at Chokwe hydrometric station 3 

 4 

5 

Figure 2. Plots of the empirical distribution of the annual daily maximum flood heights (ADMFH)
at Chokwe hydrometric station.
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Figure 3: Diagnostic plots of the MLE approach GEV fit at Chokwe hydrometric station 2 

 3 

Figure 3. Diagnostic plots of the MLE approach GEV fit at Chokwe hydrometric station.
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 1 

Figure 4: (a) Top panel: Trace and marginal posterior density of the parameter μ, (b) Middle 2 

panel: Trace and marginal posterior density of the parameter σ and, (c) Bottom panel: Trace 3 

and marginal posterior density of the parameter  4 

5 

Figure 4. (a) Top panel: trace and marginal posterior density of the parameter µ, (b) middle
panel: trace and marginal posterior density of the parameter σ and, (c) bottom panel: trace and
marginal posterior density of the parameter ξ.
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 1 

Figure 5: Return level plot of posterior distribution with 95% Bayesian credible intervals 2 

(dashed lines) at Chokwe hydrometric station 3 

Figure 5. Return level plot of posterior distribution with 95 % Bayesian credible intervals
(dashed lines) at Chokwe hydrometric station.
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